Meereis: Unterschied zwischen den Versionen

Aus Klimawandel
Keine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
 
(55 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
Als Meereis bezeichnet man das gefrorene Meerwasser der polaren Ozeane. Es spielt eine wichtige Rolle im [[Klimasystem]] der Erde.
Als Meereis bezeichnet man das gefrorene Meerwasser der polaren Ozeane. Es spielt eine wichtige Rolle im [[Klimasystem]] der Erde.


== Meereis und Klima ==
== Die Bildung von Meereis ==


Im Unterschied zu dem Eis der großen [[Eisschilde]], das durch [[Niederschlag]] entsteht, wird Meereis durch das Gefrieren von Meerwasser gebildet. Bei einer Wassertemperatur von unter -1.8&nbsp;ºC bilden sich millimetergroße Eiskristalle, die sich an der Wasseroberfläche ansammeln und zu einer Eisdecke zusammenfrieren. In den Prozess des Gefrierens werden nur Wassermoleküle einbezogen, während die viel größeren Salzionen im Meerwasser zurück bleiben und dadurch dessen Salzgehalt erhöhen. Teilweise wird das Salz aber auch im Meereis selbst in kleinen Hohlräumen als flüssige, salzige Lake eingebaut.<ref name="Notz 2011" />
Im Unterschied zu dem Eis der großen [[Eisschilde]], das durch [[Niederschlag]] entsteht, wird Meereis hauptsächlich durch das Gefrieren von Meerwasser gebildet. Während der Gefrierpunkt von Süßwasser bei 0 °C liegt, befindet sich der von Meerwasser je nach Salzgehalt deutlich darunter. Im Meerwasser der Polargebiete bilden sich bei einer Wassertemperatur von unter -1.8 ºC millimetergroße Eiskristalle, die sich an der Wasseroberfläche ansammeln und zu einer Eisdecke zusammenfrieren. In den Prozess des Gefrierens selbst werden nur Wassermoleküle einbezogen, während die viel größeren Salzionen nicht in das Kritallgitter von Eis eingebaut weren können und größtenteils im Meerwasser zurück bleiben und dadurch dessen Salzgehalt und damit auch dessen Dichte erhöhen. Teilweise wird das Salz aber auch im Meereis selbst in kleinen Hohlräumen als flüssige, salzige Lake eingebaut,<ref name="Notz 2011">Notz, D. (2011): Meereis in der Arktis und Antarktis, in: José L. Lozán et al. (Hrsg.): Warnsignal Klima: Die Meere - Änderungen und Risiken. Wissenschaftliche Auswertungen, Hamburg, 96-101; aktualisierte Fassung [http://www.warnsignale.uni-hamburg.de/?page_id=1489 online]</ref> so dass Meereis 25-50 % des Salzgehalts des Meerwassers enthält, aus dem es entstanden ist.<ref name="IPCC WGI 4.2 2013">IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, 4.2.1</ref> Der Salzgehalt des Meerwassers schwankt jedoch im Laufe des Jahres. Aus neu gebildetem Meereis sickert die salzige Lake u.a. aufgrund ihrer hohen Dichte langsam nach unten aus, so dass am Ende des Winters der Salzgehalt von Meereis nur noch etwa ein Fünftel des ursprünglichen Gehalts bei der Bildung des Eises beträgt. Während des Sommers verliert das Eis weiteres Salwasser, weil das an der Oberfläche entstehende Schmelzwasser durch das Eis sickert und die Sole langsam herausdrückt, so dass am Ende nur noch ca. 10 % des anfänglichen Salzgehaltes übrigbleiben.<ref name="Notz 2015">Notz, D. (2015): Bedeutung des Meereises für das Weltklima, in: José L. Lozán, Hartmut Graßl, Dieter Kasang, Dirk Notz & Heidi Escher-Vetter: Warnsignal Klima. Das Eis der Erde, 189-193</ref> Meereis dehnt sich nicht nur in der Fläche aus, sondern wächst auch an der Basis der Eisschicht, sodass sie dicker wird.


Meereis ist nicht nur ein wichtiger Indikator für Klimaänderungen, sondern auch ein bedeutender Klimafaktor. Von klimatisch großer Bedeutung ist die [[Eis-Albedo-Rückkopplung]]. Die hohe [[Albedo]] von 60 bis 90&nbsp;% führt dazu, dass die einfallende Sonnenstrahlung größtenteils wieder in den Weltraum reflektiert wird. Dadurch erklären sich zu einem großen Teil die geringen Temperaturen in den hohen Breiten und die starken jahreszeitlichen Schwankungen der Temperatur in den Gebieten mit wechselnder Eisbedeckung.
== Wechselwirkungen mit dem Klimasystem ==
===Meereis und Atmosphäre===
{|
|- style="vertical-align:top;"
| [[Bild:Albedo-Eis2.jpg|thumb|360px|Reflexion von Sonnenstrahlen auf weißer Eisoberfläche]]||[[Bild:Albedo-Eis.jpg|thumb|360px|Absorption von Sonnenstrahlen durch den Ozean]]
|-
|}
Meereis ist nicht nur ein wichtiger Indikator für Klimaänderungen, sondern auch ein bedeutender Klimafaktor. Von klimatisch großer Bedeutung ist die [[Eis-Albedo-Rückkopplung]]. Die hohe [[Albedo]] von 60 bis 90 % (letztere bei Neuschnee auf dem Eis) führt dazu, dass die einfallende Sonnenstrahlung größtenteils wieder in den Weltraum reflektiert wird. Besonders Frischschnee besitzt gegenüber Meereis eine höhere Albedo (0,8-0,9 im Vergleich zu 0,5-0,7).<ref name="Markvart 2003">Tom Markvart, Luis CastaŁżer (2003). Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier. ISBN 1-85617-390-9.</ref> Wenn also im Frühling die solare Einstrahlung wieder stärker und länger wird, reflektiert schneebedecktes Meereis mehr Strahlung als schneefreies Meereis und beginnt somit später zu schmelzen.<ref name="Fichefet 2000" /> Dadurch erklären sich zu einem großen Teil die geringen Temperaturen in den hohen Breiten und die starken jahreszeitlichen Schwankungen der Temperatur in den Gebieten mit wechselnder Eisbedeckung. Auch bei längerfristigen Änderungen der Temperatur verstärkt die Eis-Albedo-Rückkopplung die Erwärmung bzw. Abkühlung. So wird die gegenwärtige [[Arktische Verstärkung|stärkere Erwärmung der Arktis]] zumindest teilweise auf diesen Verstärkungseffekt zurückgeführt.  


Anders als bei Eisschilden erfolgt die Reaktion von Meereis auf klimatische Veränderungen (s.u. Klimatische Folgen) nahezu unmittelbar. Die Ausdehnung von Meereisgebieten und die Dicke des Meereises reagiert daher deutlich auf die jahreszeitlichen Temperaturänderungen. So schwankt die Meereisausdehnung in der Arktis zwischen 15 Millionen km<sup>2</sup> im Winter und 4-5 Millionen&nbsp;km<sup>2</sup> im Sommer und in der Antarktis sogar zwischen 18 und 3&nbsp;Millionen&nbsp;km<sup>2</sup>. Diese extremen jahreszeitlichen Schwankungen machen es schwierig, längerfristige Trends festzustellen.
Meereis wirkt sich aber nicht nur auf die Temperatur der Atmosphäre aus, sondern besitzt auch einen Einfluss auf die [[atmosphärische Zirkulation]]. Die tiefen Temperaturen über dem Meereis bewirken einen starken Temperaturgradienten zu den angrenzenten wärmeren Gebieten niederer Breiten. Dadurch wird ein relativ stabiler zirkumpolarer Wind aus östlicher Richtung aufrecht gehalten, der das Eindringen warmer Luft aus den mittleren Breiten ebenso weitgehend verhindert wie das Ausbrechen von Kaltluft von den Polargebieten in die mittleren Breiten. Das starke Abschmelzen des arktischen Meereises in den letzten Jahren hat nun gerade diese Barriere durchlässiger gemacht und ist möglicherweise für einige der kalten Winter in Europa und Nordamerika in den letzten Jahren verantwortlich (vgl. [[Arktisches_Meereis#Klimatische_Folgen|Arktisches Meereis]] und [[Kalte Winter in Europa]]).


== Veränderungen des arktischen Meereises ==
===Meereis und Ozean===
[[Bild:2007_Arctic_Sea_Ice.jpg|thumb|420 px|Das Meereis-Minimum im September 2007 im Vergleich zum früheren Rekordminimum 2005 und den mittleren Minima 1979-2000. Oben rechts das September-Minimum 2008.]]
[[Bild:Meereis Atmosphaere Ozean.jpg|thumb|520 px|Wärmeaustausch zwischen Atmosphäre und Ozean mit und ohne Meereis]]
[[Bild:Meereisausdehnung_arktis.jpg|thumb|420 px|Die Abnahme der Ausdehnung des arktischen Meereises zwischen 1979 und 2012 (September-Eis)]]
Meereis bildet außerdem eine wichtige Barriere zwischen Ozean und Atmosphäre und verhindert weitgehend deren Austausch von Bewegung (Wind und Meeresströmungen) und Gasen (Wasserdampf und CO<sub>2</sub>). Auch in Bezug auf Wärme wirkt das Meereis als isolierende Schicht zwischen kalter polarer Luft, die sich zum Winter hin schneller abkühlt als der Ozean, und relativ warmem Wasser. Während der Wintermonate dehnt sich das Meereis nicht nur in der Fläche aus, sondern wird auch dicker. Aber je dicker das Eis wird, desto mehr schirmt es den Ozean vom Wärmeverlust an die Atmosphäre ab. Das Meerwasser unter dem Eis bleibt daher relativ warm und verringert das Eiswachstum von unten her. <ref name="Peixoto 1992" /> <ref name="Fichefet 2000">Fichefet, T., Tartinville, B., Goosse, H. (2000): Sensitivity of the Antarctic sea ice to the thermal conductivity of snow. Geophysical Research Letters, Vol. 27, No.3, pp. 401-404.</ref> Andere Faktoren, die die Stärke dieser Isolation beeinflussen, sind Salzgehalt und Temperatur des Meereises sowie Schnee auf dem Meereis: Je höher der Salzgehalt oder die Temperatur des Eises (z.B. bei jungem Eis), desto schlechter die Wärmeleitfähigkeit, und umso stärker ist dann auch die Isolation. <ref name="Wadhams 2000">Wadhams, P.: Ice in the Ocean (2000). Overseas Publishers Association, Gordon and Breach Science Publishers imprint. ISBN 90-5699-296-1.</ref> Auch Schnee leitet Wärme sehr schlecht. Wenn also Schnee auf Meereis fällt, wird der Ozean noch stärker isoliert und das Wachstum von Meereis an der Basis weiter verringert. <ref name="Fichefet 2000" /> <ref name="IPCC WGI 4.2 2013" />


=== Veränderungen der Ausdehnung===
Wenn das Eis im Sommer nicht komplett abschmilzt, wird es mehrjähriges Eis genannt. Es nimmt im nächsten Winter zunächst weiter an Dicke zu, isoliert dadurch jedoch immer stärker den darunterliegenden Ozean von der kalten Atmosphäre und vermindert wie erläutert das Eiswachstum unter Wasser. Hinzu kommt, dass sich auf diesem mehrjährigen Eis früh eine Schneedecke bildet, die in den Wintermonaten an Mächtigkeit zunimmt und das Eis und somit den Ozean sehr effektiv isoliert. Diese beiden Effekte haben zur Folge, dass mehrjähriges Eis sehr viel langsamer dicker wird als einjähriges Eis. Letzteres kann im Frühjahr sogar die Dicke des mehrjährigen Eises übertreffen.<ref name="Notz 2010">Notz, D. (2010): [http://www.mpimet.mpg.de/fileadmin/MPG_Jahresberichte_Taetigkeitsberichte/2010/JB2010_Notz_2010.pdf Das große Schmelzen: Meereis im Klimawandel] Max-Planck-Gesellschaft, Tätigkeitsbericht 2009/10</ref> Insgesamt hat die winterliche Isolation des Wassers zur Folge, dass der Ozean im nächsten Sommer deutlich wärmer ist als ohne das winterliche Meereis, was nach der Eisschmelze zu wärmeren Sommern führt. Im Sommer erwärmt sich die Atmosphäre schneller als der Ozean. Kaltes Oberflächenwasser, über dem es während des Winters kein Eis gegeben hat, bremst diese Erwärmung relativ stark ab. Warmes Wasser, das unter dem schmelzenden Eis frei wird, dämpft die Erwärmung der Atmosphäre deutlich weniger.
Die Ausdehnung von Meereis lässt sich seit den 1970er Jahren ziemlich gut durch Satellitenbeobachtungen erfassen. Alle Beobachtungen zeigen für die letzten Jahrzehnte eine deutliche Abnahme der arktischen Meereisbedeckung, im sommerlichen Minimum im September um etwa 8&nbsp;% pro Jahrzehnt. Die Meereisdecke der Antarktis nimmt dagegen im Winter leicht um 0,5&nbsp;% pro Jahrzehnt zu und bleibt im Sommer ungefähr gleich. Der Trend in der Arktis hat sich in den letzten Jahren sogar verstärkt. Seit den 1950er und 1960er Jahre hat sich im September die Meereisausdehnung um mehr als die Hälfte verringert. Betrug sie damals noch etwa acht Mio km<sup>2</sup>, so lag sie im September 2012 bei nur noch 3,4 Mio km<sup>2</sup>.


Von 1979 bis 2006 betrug die Abnahme der Meereisbedeckung im September, dem Monat des Eisminimums, 8,9&nbsp;% pro Jahrzehnt. Während 1982 die Ausdehnungn noch 7,5&nbsp;Millionen&nbsp;km<sup>2</sup> betrug, waren es 2005 nur noch 5,6&nbsp;Millionen&nbsp;km<sup>2</sup>, eine Differenz von 25&nbsp;%.<ref>Gerland, S., Aars, J., Bracegirdle, T., Carmack, E., Hop, H., Hovelsrud, G.K., Kovacs, K.M., Lydersen, C., Perovich, D.K., Richter-Menge, J., Rybråten, S., Strøm, H., & Turner, J. (2007): Ice in the Sea. Chapter 5 of Global Outlook for Ice and Snow. UN Environment Program (UNEP), 63-96 [http://www.unep.org/geo/geo_ice/PDF/GEO_C5_LowRes.pdf online]</ref> Das Minimum von 2005 wurde jedoch noch bei weitem übertroffen von den Verhältnissen im Jahre 2007, als das Minimum am 16.&nbsp;September nur noch 4.14&nbsp;Million km<sup>2</sup> betrug.<ref> National Snow and Ice Data Center: [http://nsidc.org/arcticseaicenews/2007.html Arctic Sea Ice News Fall 2007]</ref> Die Nordwestpassage war seit Beginn der Satellitenmessungen zum ersten Mal eisfrei. 2008 wurde das Minimum von 2007 nur wenig verfehlt. Aber dieses Mal waren dafür beide Schiffspassagen, die Nordwest- und die Nordostpassage, offen.<ref name="Tagesschau">Vgl. tagesschau.de (Nachricht vom 28.08.2008): [http://www.tagesschau.de/ausland/eisschmelze100.html Eisschmelze in der Arktis • Nordost- und Nordwestpassage erstmals eisfrei]</ref> Die Minima 2007 und 2008 lagen sogar um 37 % unter dem Mittel von 1980-1999, was zur Folge hatte, dass 60 % des arktischen Ozeans nicht vom Eis bedeckt waren. Die Simulation von Klimamodellen hatte ein solches Minimum erst 30 Jahre später erwartet.<ref name="Wang">Wang, M., and J.E. Overland (2009): A sea ice free summer Arctic within 30 years? Geophys. Res. Lett., 36, L07502, doi: 10.1029/2009GL037820</ref>
Dieser Mechanismus hat nun allerdings zur Folge, dass es durch das Abschmelzen von Meereis durch den gegenwärtigen Klimawandel nicht nur eine positive Rückkopplung durch die abnehmende Albedo gibt, die den Schmelzprozess weiter antreibt, sondern auch eine negative Rückkoplung, die dem entgegenwirkt. Wenn das Eis in einem Sommer stärker abschmilzt als im vorhergegangenen, gibt es zum nächsten Winter hin mehr eisfreies Wasser, von dem deutlich mehr Wärme an die Atmosphäre entweicht als im Winter zuvor. Über dem dadurch kühleren Wasser kann sich daher früher und schneller Eis bilden, so dass nach einem Sommer mit geringer Eisfläche sich im nächsten Winter zumeist eine wieder größere Eisfläche bildet. Darin wirkt auch mit, dass es sich bei dem neuen Eis um relativ dünnes Eis handelt, das den Ozean weniger gut isoliert und vor Auskühlung schützt als dickeres Eis. Hinzu kommt, dass auch die Schneedecke auf dem neuen Eis relativ dünn ist und daher ebenfalls weniger gut isolierend wirkt.<ref name="Notz 2011" /> Die größere Eisfläche im Winter hat dann auch zur Folge, dass das Eis im nächsten Sommer weniger stark abschmilzt als im Sommer zuvor. So gab es in der Arktis nach den Jahren mit einer sehr geringen sommerlichen Eisbedeckung 2007 und 2012 in den Folgejahren 2008 und 2013 wieder eine deutlich größere Eisausdehnung (vgl. [[Arktisches Meereis]]).


Im September 2009 war die Eisdecke dann wieder etwas größer als in den beiden Jahren davor, lag jedoch 2010 um 240 000 km<sup>2</sup> unter dem Wert von 2009.<ref> National Snow and Ice Data Center: [http://nsidc.org/arcticseaicenews/2010/091510.html September 15, 2010 ]</ref> Im Jahre 2011 erreichte dann das Eisminimum seinen geringsten Wert nach 2007. Mit 4,33 Mio. km<sup>2</sup> lag es nur um 0,16 Mio. km<sup>2</sup> über dem Septemberminimum von 2007. Wie im Jahre 2008 waren auch 2011 beide Seewege durch die Arktis, die Nordwest- und die Nordostpassage, eisfrei.
Anders als bei Eisschilden erfolgt die Reaktion von Meereis auf klimatische Veränderungen nahezu unmittelbar. Die Ausdehnung von Meereisgebieten und die Dicke des Meereises reagieren daher deutlich auf die jahreszeitlichen Temperaturänderungen. So schwankt die Meereisausdehnung in der Arktis zwischen 15 Millionen km<sup>2</sup> im Winter und 4-5 Millionen&nbsp;km<sup>2</sup> im Sommer und in der Antarktis sogar zwischen 18 und 3&nbsp;Millionen&nbsp;km<sup>2</sup>. Diese extremen jahreszeitlichen Schwankungen machen es schwierig, längerfristige Trends zu bestimmen. Auch die Position von Meereis ist sehr viel dynamischer als die von Eis auf dem Land. Sowohl Wind als auch Ozeanströmungen führen zu Verschiebungen der Meereisflächen: Auf kleinen Zeitskalen ist Wind der entscheidende Antrieb, während über einen längeren Zeitraum die Meeresströmungen ausschlaggebend sind.<ref name="Peixoto 1992">Peixoto, J.-P., Oort, A. H.: Physics of Climate (1992). Springer-Verlag New York, ISBN: 978-0-88318-712-8.</ref>


Ein neues Rekordminimum, das noch einmal deutlich unter dem Wert von 2007 lag, wurde dann im September 2012 erreicht. Die 4-Millionen-km<sup>2</sup>-Marke wurde deutlich unterschritten. Am 16. September betrug die Eisbedeckung 3,41 Mio. km<sup>2</sup> und lag damit um 760 000 km<sup>2</sup>, was etwa der doppelten Fläche Deutschlands entspricht, unter dem Minimum von 2007. Damit wurde der Mittelwert der Jahre 1979-2000 von 6,7 Mio. km<sup>2</sup> nahezu halbiert. In der Satelliten-Ära seit 1979 lagen die sechs Jahre mit der geringsten Eisbedeckung alle in den letzten sechs Jahren 2007-2012. Der Hauptgrund für den starken Eisverlust 2012 ist darin zu sehen, dass das Meereis der Arktis zunehmend dünner geworden ist. Dieses dünne Eis kann leichter durch besondere Wetterereignisse aufgebrochen und abgeschmolzen werden. So hat Anfang August 2012 auch ein großes Tiefdruckgebiet mit starken Stürmen über der Arktis stark  dazu beigetragen, dass das dünne Eis über weite Flächen zerstört wurde.<ref> National Snow and Ice Data Center: [http://nsidc.org/arcticseaicenews/2012/09/arctic-sea-ice-extent-settles-at-record-seasonal-minimum/ Arctic sea ice extent settles at record seasonal minimum]</ref> Allerdings betrug der Anteil des Sturmtiefs an der Eis-Reduktion nur 4,4 %, so dass auch ohne das Sturmtief das Rekordminimum im Jahr 2012 erreicht worden wäre.<ref>J. Zhang, R. Lindsay, A. Schweiger and M. Steele (2013): The impact of an intense summer cyclone on 2012 Arctic sea ice retreat, Geophysical Research Letters, DOI: 10.1002/grl.50190</ref>
== Das arktische Meereis ==


=== Veränderungen der Eisdicke===
* Hauptarikel: [[Arktisches Meereis]]
Auch die Meereisdicke scheint in der Arktis deutlich abgenommen zu haben. Das Meereis der Arktis wird unter heutigen Klimabedingungen wenige Dezimeter oder Meter dick. Es bildet daher nur eine dünne Haut auf dem Arktischen Ozean und kann leicht durch Winde und Meeresströmungen bewegt und dabei auch aufgerissen werden. Regional und lokal kann das Eis infolgedessen sehr unterschiedlich dick sein. Dabei findet sich das dickste Eis nicht unbedingt in Gebieten mit den niedrigsten Temperaturen, sonder vielmehr dort, wo es durch Eisdrift zusammengeschoben wird. Im Arktischen Ozean gibt es entsprechend den mittleren Windsystemen zwei große Driftsysteme. Im Beaufortwirbel nördlich der Küsten Alaskas zirkuliert das Eis im Uhrzeigersinn. Im Transpolarstrom wird es von den Küsten Sibiriens über den Nordpol in die Frahmstraße zwischen Spitzbergen und Grönland transportiert<ref>Tomczak, T., Godfrey, S. (2003): [http://www.es.flinders.edu.au/~mattom/regoc/pdfversion.html Regional Oceanography: an Introduction]. Daya Publishing House, Delhi</ref> Entsprechend finden sich großräumig gesehen das dünnste Eis vor den Küsten Sibiriens und das dickste Eis mit bis zu 6&nbsp;m Mächtigkeit vor den Küsten Grönlands und Kanadas.


Außer durch punktuelle Bohrungen wurde die Eisdicke in der Vergangenheit vor allem durch Echolotmessungen von U-Booten aus gemessen. In jüngster Zeit sind elektromagnetische Induktionsmessungen durch Hubschraubersonden hinzugekommen. Die U-Boot-Messungen zeigen zwischen den 1950er und 1990er Jahren im zentralen Arktischen Ozean eine Abnahme der Eisdicke um 43&nbsp;% bzw. von 3,1 auf 1,8&nbsp;m. Die Hubschrauber-Messungen ergaben eine Abnahme von 2,5 auf 1,95&nbsp;m bzw. um 22&nbsp;% von 1991 bis 2001 zwischen Spitzbergen und dem Nordpol.<ref>Haas, C. (2005): Auf dünnem Eis? - Eisdickenänderungen im Nordpolarmeer, in: José L. Lozán / Hartmut Graßl / Hans-W. Hubberten / Peter Hupfer / Ludwig Karbe / Dieter Piepenburg (Hrsg.): Warnsignale aus den Polarregionen. Wissenschaftliche Auswertungen, Hamburg, 97-101</ref>
== Das antarktische Meereis ==
* Hauptarikel: [[Antarktisches Meereis]]


=== Ein- und mehrjähriges Eis ===
== Einzelnachweise ==  
In den frühen und mittleren 1980er Jahren bestanden 38 % der Eisbedeckung im Frühling aus einjährigem Eis, der Rest aus älterem Eis, wovon 30 % fünf und mehr Jahre alt war. Einjähriges Eis im Frühling bedeutet, dass dieses Eis sich im vorhergehenden Herbst und Winter gebildet hat. Mehrjähriges Eis ist im allgemeinen dicker als einjähriges Eis und widersteht eher der Eisschmelze im Sommer.<ref name="Stroeve 2012">J.C. Stroeve, et al. (2012): The Arctic’s rapidly shrinking sea ice cover: a research synthesis, Climatic Change 110, 1005–1027</ref>
<references/>


Bis 1996 hat das einjährige Eis des arktischen Meereises um 52 % zugenommen, während das mehr als 5 Jahre alte Eis um 18 % abgenommen hat. Diese Veränderungen sind stark durch die winterliche Arktische Oszillation beeinflusst, die von den späten 1980er Jahren bis in die frühen 1990er an Stärke zugenommen hat. Die dadurch angetriebenen Winde haben dafür gesorgt, das sehr viel dickeres Eis aus dem Arktischen Ozean durch die Framstraße in den Nordatlantik getrieben wurde. Obwohl sich dann ab 1995 die AO wieder abgeschwächt hat, hat dennoch der Anteil des einjährigen Eises im Arktischen Ozean weiter zugenommen. Nach dem dramatischen Eisrückgang im September 2007 bestand im Frühling 2008 72 % der Eisbedeckung aus einjährigem Eis. Auch in den Folgejahren lagen die Anteile für einjähriges Eis unter den Werten der frühen 1990er Jahre, während der Anteil des mehr als fünfjährigen Eises im Frühling 2010 ein Rekordminimum erreichte.<ref name="Stroeve 2012" />
== Literatur ==


=== Ursachen der Eisschmelze ===
* Notz, D. (2011): Meereis in der Arktis und Antarktis, in: José L. Lozán et al. (Hrsg.): Warnsignal Klima: Die Meere - Änderungen und Risiken. Wissenschaftliche Auswertungen, Hamburg, 96-101; aktualisierte Fassung [http://www.warnsignale.uni-hamburg.de/?page_id=1489 online]
[[Bild:Eis-Albedo3.jpg|thumb|420px|Der Einfluss der Änderung der Albedo auf das Klima]]
* Haas, C. (2005): Auf dünnem Eis? - Eisdickenänderungen im Nordpolarmeer, in: José L. Lozán / Hartmut Graßl / Hans-W. Hubberten / Peter Hupfer / Ludwig Karbe / Dieter Piepenburg (Hrsg.): Warnsignale aus den Polarregionen. Wissenschaftliche Auswertungen, Hamburg, 97-101
Für die beobachteten Veränderungen der Eisausdehnung und Meereisdicke kommen verschiedene Ursachen in Frage. Sie können sowohl thermischer wie dynamischer Natur und natürlich oder [[Anthropogen|anthropogen]] bedingt sein.  
* Bareiss, J., K. Görgen, A. Helbig (2005): Arktisches Meereis - Ursachen der Variabilität und Trends in den vergangenen 30 Jahren, in: José L. Lozán / Hartmut Graßl / Hans-W. Hubberten / Peter Hupfer / Ludwig Karbe / Dieter Piepenburg (Hrsg.): Warnsignale aus den Polarregionen. Wissenschaftliche Auswertungen, Hamburg, 218-225


==== Änderungen des Klimas ====
== Weblinks ==
* s. Hauptartikel [[Klimaänderungen in den Polargebieten]]
* [http://www.meereisportal.de/de Meereisportal] Hintergrundinformationen zum Thema Meereis, tagesaktuelle Meereiskarten von Arktis und Antarktis sowie unterschiedlichen Basisdaten für die eigene Weiterverarbeitung
Eine Ursache liegt mit Sicherheit in der Erwärmung der bodennahen Luftschichten, die  zwischen 1981 und 2003 im Mittel 0,54 °C pro Jahrzehnt betrug und damit deutlich über dem globalen Durchschnitt lag. Außerdem drang in den letzten zwei bis drei Jahrzehnten verstärkt warmes Meereswasser aus dem Atlantik und Pazifik in den Arktischen Ozean ein. Eine Folge der Erwärmung von Atmosphäre und Meerwasser war die Vorverlegung des Beginns der sommerlichen Eisschmelze und die Verschiebung ihres Endes in den späteren Herbst hinein, so dass sich die Schmelzperiode seit Anfang der 1980er Jahre um etwa 10 Tage pro Jahrzehnt verlängert hat. Die dadurch verkürzte winterliche Eisbildungsperiode erlaubte in vielen Regionen, in denen früher mehrjähriges Eis lag, keine Eisdicken mehr, die den nächsten Sommer überdauerten.
* [http://www.meereisportal.de/datenportal.html Meereis Datenportal] Meereisdaten monatlich und täglich (2002 bis aktuell) werden in Karten angezeigt
 
* Notz, D. (2010): [http://www.mpimet.mpg.de/fileadmin/MPG_Jahresberichte_Taetigkeitsberichte/2010/JB2010_Notz_2010.pdf Das große Schmelzen: Meereis im Klimawandel] Max-Planck-Gesellschaft Tätigkeitsbericht 2009/10
==== Änderungen der Albedo ====
* [http://www.unep.org/geo/geo%5Fice/PDF/GEO_C5_LowRes.pdf Ice in the Sea] UNEP-Report über das Meereis auf der Erde
Ein weiterer sehr wichtiger Effekt ist die Änderung der [[Albedo]]: Die Ausdehnung eisfreier Flächen reduziert großflächig die Reflexion und verstärkt die [[Absorption]] der [[Strahlung|solaren Einstrahlung]] durch das Meerwasser. Offenes Wasser hat eine Albedo von lediglich 0,07 gegenüber 0,65 von unbedecktem und 0,85 bei schneebedecktem Eis.<ref name="Stroeve 2012" /> Dadurch erwärmt sich nicht nur das Meerwasser, sondern auch die darüber liegende Atmosphäre, wodurch weiteres Eis zum Schmelzen gebracht und die Eisbildung im Herbst verzögert wird. Die sich auf diese Weise selbst verstärkende [[Eis-Albedo-Rückkopplung|Meereis-Albedo-Rückkopplung]] hat so von Jahr zu Jahr zu einer immer geringer werdenden Eisbedeckung geführt.
 
[[Bild:Arktis-Albedo.jpg|thumb|420 px|Entwicklung der Meereis-Albedo (oben) und der Albedo des gesamten Gebietes von Meereis und offenem Ozean (unten) in der Arktis 1982-2009]]
Die Oberflächenalbedo des Arktischen Ozeans ist in den letzten Jahrzehnten deutlich zurückgegangen. Das betrifft sowohl die kombiniete Fläche von Offenem Ozean und Eisflächen als auch die Albedo auf den Eisflächen selbst. Zum einen ist der Rückgang der Albedo bedingt durch die Verringerung der Meereisfläche, durch die eine zunehmende Wasseroberfläche frei wird, die eine deutlich kleinere Albedo als Eis besitzt. Aber auch die Eisflächen selbst haben sich zunehmend in Richtung einer geringeren Albedo verändert. Das frühe Schmelzen im Jahresverlauf beseitigt den frisch gefallenen Schnee und gibt dunklere Eisflächen frei und es bilden sich Schmelzwasserflächen auf dem Eis.<ref name="Riihelä">Riihelä, A., T. Manninen and V. Laine (2013): Observed changes in the albedo of the Arctic sea-ice zone for the period 1982–2009, Nature Climate Change, online 4. August 2013, DOI: 10.1038/NCLIMATE1963</ref> Besonders extrem war die Eis-Albedo-Rückkopplung im Jahre 2007. Im Mittel überleben 40 % des einjährigen und 80 % des älteren Eises die Schmelzsaison. 2007 waren im September jedoch nur 16 % des einjährigen Eises übrig. Und in manchen Regionen nahm der obere Ozean fünf mal mehr solare Energie auf als im Durchschnitt der Jahre 1979-2005.<ref name="Stroeve 2012" />
 
Auch die Ablagerung von Ruß auf arktischem Eis und Schnee verringert die Albedo der Oberfläche und erhöht die Absorption von Strahlung, wodurch es ebenfalls zum Schmelzen von Eis und Schnee kommt. Die Masse des arktischen Rußes stammt aus Gebieten südlich des 60. Breitengrades, besonders aus Nordamerika, Europa, Russland und Asien. In Jahren verbreiteter Waldbrände stammen allein 30 % der arktischen Rußablagerungen aus Waldbränden in Nordamerika und Sibirien.<ref name="DeAngelo 2011">DeAngelo, B.,  Ed. (2011): [http://library.arcticportal.org/1210/ An Assessment of Emissions and Mitigation Options for Black Carbon for the Arctic Council]; Technical Report of the Arctic Council Task Force on Short´Lived Climate Forcers. Technical Report. Arctic Council</ref>
 
====Atmosphärische Dynamik====
Eine weitere Ursache sind Veränderungen in der atmosphärischen Dynamik hin zu einem positiven [[Arktische Oszillation|AO]]- und [[NAO]]-Index und zu einer negativen Phase der Pazifischen Dekadenoszillation (PDO). Diese Veränderungen hatten zur Folge, dass sich der Beaufortwirbel abschwächte und Zyklonen zunehmend in das arktische Kerngebiet eindrangen. Das wiederum bewirkte, dass zunehmend Eis aus dem Arktischen Ozean in den Nordatlantik transportiert wurde. Auch der Zustrom wärmeren Wassers aus dem Atlantik könnte hiermit zusammenhängen.<ref>Bareiss, J., K. Görgen, A. Helbig (2005): Arktisches Meereis - Ursachen der Variabilität und Trends in den vergangenen 30 Jahren, in: José L. Lozán / Hartmut Graßl / Hans-W. Hubberten / Peter Hupfer / Ludwig Karbe / Dieter Piepenburg (Hrsg.): Warnsignale aus den Polarregionen. Wissenschaftliche Auswertungen, Hamburg, 218-225</ref> Da die Position der Eisgrenze im Ozean wiederum die Atmosphäre beeinflusst, ist es wahrscheinlich, dass das Zurückweichen des Eises auch das häufigere Vordringen von Zyklonen begünstigt. In den letzten Jahren haben sich der AO- wie der PDO-Index wieder normalisiert. Die Eisschmelze geht dennoch weiter.
 
Die Gründe dafür liegen möglicherweise darin, dass die Abschmelzvorgänge in den 1980er und 1990er Jahren durch das Zusammentreffen einer stärkeren Erwärmung und Veränderungen der AO und PDO zunächst angestoßen wurden, dann aber eine Eigendynamik entwickelt haben, die sich auch nach der Normalisierung von AO und PDO nicht wieder umkehren ließ. Zunächst haben nach dieser Theorie<ref>Lindsay, R.W. and J. Zhang, 2005: The thinning of Arctic sea sce, 1988-2003. Have we passed a tipping point? Journal of Climate 18, 4879-4894</ref> zwar externe Faktoren eine zunehmende Verringerung der Eisausdehnung und -dicke verursacht, die sich aber nach dem teilweisen Wegfall dieser Faktoren selbst trägt. D.h. der jüngste Rückzug des Eises ist nicht mehr primär auf den externen Antrieb zurückzuführen, sondern auf die Wirkung der Eis-Albedo-Rückkopplung.
 
Im Jahr 2007 trugen zudem südliche Winde zur starken Eisschmelze bei.<ref>Comiso, J. C., C. L. Parkinson, R. Gersten, L. Stock (2008): Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35, L01703.</ref>
 
=== Klimatische Folgen ===
Die großen Meereisflächen der Arktis besitzen nicht nur einen Einfluss auf die [[Strahlung]] (s.o.), sondern auch auf die atmosphärische Dynamik. Aufgrund der tiefen Temperaturen über dem Eis rund um den Nordpol kommt es zum Absinken von Luftmassen. Dadurch bildet sich in der Höhe über dem arktischen Meereis ein [[Tiefdruckgebiet]]. Die in das Tief einströmende Luft wird durch die [[Corioliskraft]] zu einem sich gegen den Uhrzeigersinn drehenden zirkumpolaren Wirbel umgelenkt. Obwohl dieser Polarwirbel am Nordpol weniger stabil ist als am Südpol, verhindert er weitgehend den Luftmassenaustausch mit den niedrigeren Breiten. So kommt es vor allem im Winter selten zum Einstrom warmer, aber ebenfalls selten zum Ausstrom kalter Luft. Damit im Zusammenhang steht auch die Ausbildung eines starken Polarjets und einer starken [[NAO|Nordatlatischen Oszillation]].


Wenn sich wie in den letzten Jahren die Meereisausdehnung im Sommer stark verringert, kommt es im Endeffekt zu einer Schwächung des Polarwirbels: Warme Luft kann dann besser in das Polargebiet eindringen und kalte Luft in niedrigere Breiten ausströmen. Der Mechanismus ist etwa folgender: Das Nordpolarmeer nimmt im Sommer über die freien Wasserflächen mehr Wärme durch die Sonneneinstrahlung auf. Diese gibt es in den folgenden Monaten an die Atmosphäre ab. Durch die wärmere Atmosphäre werden der Temperaturgegensatz zwischen den polaren und den mittleren Breiten verringert und damit der Polar-Jet und die Nordatlatische Oszillation geschwächt. Als Folge können Kaltluftmassen aus den arktischen Breiten bis nach Europa und die USA vordringen.<ref>Francis, J.A., et al. (2009): Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274</ref>


Tatsächlich ist seit dem Jahr 2005 der sommerliche Eisrückgang deutlich beschleunigt, insbesondere in den Rekordjahren 2007 und 2012. Im Oktober 2009 wurden in der mittleren Troposphäre über große Teile des Nordpolarmeeres bis zu 5 °C höhere Temperaturen gemessen als im Mittel der Jahre 1968-96. Diese Erwärmung führte zur Destabilisierung des Polarwirbels und ließ kalte und feuchte Luft aus der Arktis bis nach Nordamerika, Nordeuropa und Nordostasien dringen. Während die Arktis im Winter Temperaturabweichungen von +4 bis +12 °C zu verzeichnen hatte, lagen die Temperaturen auf den südlich angrenzenden Kontinenten z.T. um -10 °C unter dem Mittelwert. Dieses als "Warme Arktis - Kalte Kontinente" bezeichnete Klimamuster ist in den letzten 160 Jahren nur vier Mal vorgekommen. Aufgrund des zu erwartenden weiteren Rückgangs der arktischen Eisbedeckung kann es in Zukunft häufiger geschehen, dass arktische Kaltluft weit nach Süden vordringt und z.B. in Europa für kalte und schneereiche Winter sorgt.<ref>Overland, J., et al. (2010):[http://www.arctic.noaa.gov/report10/atmosphere.html Atmosphere]</ref><ref>[http://www.arctic.noaa.gov/future/warm_arctic_cold_continent.html Warm Arctic - Cold Continents]</ref>
<div class="db-db-wb_ro">
<div class="db-db-wb_lo">
<div class="db-db-wb_ru">
<div class="db-db-wb_lu">
<div class="inhalt">


=== Projektionen ===
==Klimadaten zum Thema==
[[Bild:Meereis_modelle.jpg|thumb|420 px|Abnahme des arktischen Meereises (braune Kurve) und die von Klimamodellen berechnete Abnahme]]
{{Bild-links|Bild=Meereis global 1971 2000 Maerz.jpg|Breite=200px}}
Die Erwärmung der Atmosphäre setzt sich aus zwei Komponenten zusammen, aus der Eis-Albedo-Rückkopplung wie aus der globalen Erwärmung infolge des anthropogenen Anstiegs der Treibhausgaskonzentration. Da damit zu rechnen ist, dass beide Faktoren auch weiterhin das Abschmelzen des arktischen Meereises voran treiben werden, wird die Eisbedeckung des arktischen Ozeans über kurz oder lang im Sommer ganz verschwinden. Alle Klimamodellrechnungen zeigen bis zum Ende des 21. Jahrhunderts eine starke Reduzierung der Eisfläche im Sommer, z.T. sogar ihr völliges Verschwinden schon zum Ende dieses Jahrhunderts.<ref>Vgl. [http://www.acia.uaf.edu/pages/scientific.html Symon, C., L. Arris, B. Heal (2005): Arctic Climate Impact Assessment], Cambridge, Chapter 6, Cryosphere and Hydrology</ref>  
Klimadaten zum Thema selbst auswerten? Hier können Sie aus [https://bildungsserver.hamburg.de/themenschwerpunkte/klimawandel-und-klimafolgen/daten-zum-klimawandel/daten-zu-klimaprojektionen/arktis '''Regionaldaten zur Arktis'''], [https://bildungsserver.hamburg.de/themenschwerpunkte/klimawandel-und-klimafolgen/daten-zum-klimawandel/daten-zu-klimaprojektionen/antarktis '''Regionaldaten zur Antarktis'''] und [https://bildungsserver.hamburg.de/themenschwerpunkte/klimawandel-und-klimafolgen/daten-zum-klimawandel/daten-zu-klimaprojektionen/globale-rcp-daten '''globalen Daten'''] eigene Karten erzeugen.
<br>


Nach dem Rekordminimum der Eisausdehnung vom September 2007 hielten einige Wissenschaftler solche Projektionen jedoch für zu konservativ. Nachdem zunächst eine eisfreie Arktis im Sommer 2040 vorhergesagt wurde, gab es Stimmen, die sogar schon in 5 bis 10 Jahren einen eisfreien arktischen Ozean prognostizierten, so der NASA-Forscher Jay Zwally.<ref>Vgl. [http://www.latimes.com/news/science/environment/la-sci-arctic30-2008aug30,0,4209402.story Arctic sea ice reaches its 2nd-lowest level in nearly 30 years] Los Angeles Times</ref> Vergleicht man gängige Modellprojektionen des IPCC-Berichts von 2007 mit dem Trend der Beobachtungen, so zeigt sich, dass die Modelle die Abnahme der Eisausdehnung der Arktis deutlich unterschätzen (s. Abb.).<ref>Stroeve, J. et al. (2007): Arctic sea ice decline: Faster than forecast; in Geophysical Research Letters 34, L09501, doi:10.1029/2007GL029703</ref> Das spricht dafür, dass das arktische Meereis deutlich früher abgeschmolzen sein wird, als die IPCC-Modelle vorhersagen. Immerhin ergeben die Modellsimulationen, dass nach dem Erreichen einer Meereisausdehnung von ca. 4,6 Mill. km<sup>2</sup>, wie sie 2012 schon deutlich unterschritten wurde, die Arktis in ca. 30 Jahren eisfrei sein wird.<ref name="Wang" />
Hier finden Sie eine: [https://bildungsserver.hamburg.de/themenschwerpunkte/klimawandel-und-klimafolgen/arbeitsanweisungen-panoply-263990 '''Anleitung zur Visualisierung der Daten'''].
<br>
<br>
<br>
<br>
<br>
<div class=visualClear></div>
</div>
</div>
</div>
</div>
</div>


Berücksichtigt man jedoch alle Rückkopplungseffekte im arktischen Raum, ist eine eisfreie Arktis keineswegs stabil und unumkehrbar.<ref>Tietzsche, S., et al. (2011): Recovery mechanisms of Arctic summer sea ice, Geophysical research letters 38, doi: 10.1029/2010GL045698</ref> Zwar heizt sich das Oberflächenwasser des Arktischen Ozeans im Sommer stark auf. Ab September und verstärkt in den folgenden Monaten, wenn die Sonne im arktischen Winter das Wasser nicht mehr erwärmt, gibt der eisfreie Ozean jedoch mehr Wärme an die Atmosphäre ab als ein teilweise mit Eis bedeckter Ozean, da die isolierende Eisbedeckung fehlt. Ab November bildet sich dann neues Eis in schnellem Tempo, da dünnes Eis schneller wächst als dickeres Eis. Hinzu kommt, dass die vom Ozean her aufgewärmte Atmosphäre das Eindringen von wärmerer Luft aus niederen Breiten in den arktischen Raum eher behindert. Das Abschmelzen des arktischen Eises wird demnach durch verschiedene und gegenläufige Rückkopplungsmechanismen bestimmt. Dass hier ein sog. [[Kipppunkte_im_Klimasystem|Kipp-Punkt]] vorliegt, hält die referierte Studie des Hamburger Max-Planck-Instituts für Meteorologie daher für unwahrscheinlich.
<div class="db-db-wb_ro">
<div class="db-db-wb_lo">
<div class="db-db-wb_ru">
<div class="db-db-wb_lu">
<div class="inhalt">


== Veränderungen des antarktischen Meereises ==
==Klimamodell-Experimente zum Thema==
Die Entwicklung der Meereisausdehnung um den arktischen Kontinent herum unterscheidet sich deutlich von der der Arktis. Das arktische Meereis hat sich in den letzten Jahren kaum geändert, es hat in seiner Ausdehnung sogar leicht zugenommen. Wahrscheinlich hat das ebenso wie das starke Abschmelzen des arktischen Meereises mit menschlichen Einflüssen zu tun.<ref name="Notz 2011">Notz, D. (2011): Meereis in der Arktis und Antarktis, in: Lozán, J.L., u.a. (Hrsg): Warnsignal Klima: Die Meere - Änderungen & Risiken, Hamburg 2011, 96-101</ref> Das antarktische Meereis schmilzt vor allem von unten her, d.h. durch aufsteigendes warmes Wasser aus größeren Tiefen. Dieses Wasser kann um so leichter aufstiegen, je geringer der Dichteunterschied zwischen Oberflächen- und Tiefenwasser ist. In den letzten Jahrzehnten hat jedoch die Dichte des oberflächennahen Wassers stark abgenommen. Folgende Gründe dafür werden angenommen:
Mit dem einfachen Klimamodell [http://mscm.dkrz.de/ '''Monash Simple Climate Model (MSCM)'''] können Experimente zur Bedeutung von Eis und Schnee im Klimasystem durchgeführt werden:
* Aufgrund höherer Wasser- und Lufttemperaturen ist das Meereis im Jahresablauf insgesamt dünner geblieben als in früheren Zeiten. In der Schmelzphase gibt es daher weniger Salz an das Ozeanwasser ab, wodurch dieses eine geringere Dichte behält.
* [https://bildungsserver.hamburg.de/resource/blob/265776/d6b92ac0d85682416b49ae2b3967ed92/bedienungsanleitung-data.pdf Bedienungsanleitung] Kurzanleitung zur Nutzung des MSCM
* Aufgrund der Erwärmung haben außerdem die Niederschläge im südlichen Ozean in letzter Zeit zugenommen. Das hat ebenfalls zur Abnahme der Dichte des Oberflächenwassers rund um die Antarktis geführt.
* [https://bildungsserver.hamburg.de/themenschwerpunkte/klimawandel-und-klimafolgen/mscm-klimamodell/experimente-mittleres-klima Arbeitsblätter und Lehrerhandreichungen] Anleitung zur Arbeit mit Schülern
</div> 
</div>
</div>
</div>
</div>


<div class="db-db-wb_ro">
== Einzelnachweise ==  
<div class="db-db-wb_lo">
<references/>
<div class="db-db-wb_ru">
<div class="db-db-wb_lu">
<div class="inhalt">


== Literatur ==
==Schülerarbeiten zum Thema==
'''Schülerarbeiten zum Thema des Artikels''' aus dem [https://bildungsserver.hamburg.de/themenschwerpunkte/klimawandel-und-klimafolgen/schulprojekt-klimawandel Schulprojekt Klimawandel]:
* [https://bildungsserver.hamburg.de/resource/blob/264994/376c28fbd918ae6df7b85ec440e7de8a/2011-arktis-data.pdf Arktis] über Gefahren und Chancen durch den Klimawandel in der Arktis (Gymnasium Allee, Hamburg)
* [https://bildungsserver.hamburg.de/resource/blob/265248/e1f3aa27b4997ae4b9cd0b46ad3af55a/2014-nordpolareis-data.pdf Arktisches Meereis] Ursachen und Folgen der Eisschmelze (Schülerpraktikant am DKRZ)
* [https://bildungsserver.hamburg.de/resource/blob/265184/aba44c9de39d432953cdf859aa99f6d9/2012-eisbaeren-im-klimawandel-data.pdf Wie beeinflusst der Klimawandel das Leben der Eisbären?] über die gefährdeten Lebensgrundlagen der Eisbären durch den Klimawandel (Gymnasium Grootmoor, Hamburg)
* [https://bildungsserver.hamburg.de/resource/blob/265194/401bcd03b98c3621c73e61c45c1691bf/2014-nordostpassage-data.pdf Die Nordostpassage] über wirtschaftliche und ökologische Auswirkungen einer freien Nordostpassage (Gymnasium Grootmoor, Hamburg)
<div class=visualClear></div>
</div> 
</div>
</div>
</div>
</div>


* Notz, D. (2011): Meereis in der Arktis und Antarktis, in: José L. Lozán et al. (Hrsg.): Warnsignal Klima: Die Meere - Änderungen und Risiken. Wissenschaftliche Auswertungen, Hamburg, 96-101
* Haas, C. (2005): Auf dünnem Eis? - Eisdickenänderungen im Nordpolarmeer, in: José L. Lozán / Hartmut Graßl / Hans-W. Hubberten / Peter Hupfer / Ludwig Karbe / Dieter Piepenburg (Hrsg.): Warnsignale aus den Polarregionen. Wissenschaftliche Auswertungen, Hamburg, 97-101
* Bareiss, J., K. Görgen, A. Helbig (2005): Arktisches Meereis - Ursachen der Variabilität und Trends in den vergangenen 30 Jahren, in: José L. Lozán / Hartmut Graßl / Hans-W. Hubberten / Peter Hupfer / Ludwig Karbe / Dieter Piepenburg (Hrsg.): Warnsignale aus den Polarregionen. Wissenschaftliche Auswertungen, Hamburg, 218-225
== Weblinks ==
* [http://meereisportal.de/ meereisportal.de] Portal zum Meereis des Alfred-Wegener-Instituts, Helmholtz Zentrums für Polar- und Meeresforschung und der Universität Bremen, u.a. mit [http://www.meereisportal.de/no_cache/de/meereisbeobachtung/meereis_beobachtungsergebnisse/beobachtungsergebnisse_aus_satellitenmessungen/uebersicht_der_aktuellen_meereisausdehnung_arktisantarktis/ Karten zur aktuellen Meereisausdehnung in Arktis und Antarktis] und [http://www.meereisportal.de/de/meereisexpedition/ Berichten über Meereisexpeditionen]
* [http://nsidc.org/arcticseaicenews/ Arctic Sea Ice News & Analysis] Aktuelle Meldungen und Bilder über das arktische Meereis
* [http://www.arctic.noaa.gov/future/index.html Future of Arctic Climate and Global Impacts]
* [http://www.unep.org/geo/geo%5Fice/PDF/GEO_C5_LowRes.pdf Ice in the Sea] UNEP-Report über das Meereis auf der Erde
* [http://www.skepticalscience.com/translationblog.php?n=1620&l=6 Bericht einer Inuit über die Folgen des Klimawandels]


== Lizenzangaben ==
== Lizenzangaben ==
Zeile 100: Zeile 117:
|Teil von=Klimasystem
|Teil von=Klimasystem
|Teil von=Kryosphäre im Klimasystem
|Teil von=Kryosphäre im Klimasystem
|Regionales Beispiel=Arktisches Meereis
|Regionales Beispiel=Antarktisches Meereis
|umfasst Prozess=Eis-Albedo-Rückkopplung
|umfasst Prozess=Eis-Albedo-Rückkopplung
|ähnlich wie=Eisschilde
|ähnlich wie=Eisschilde
|ähnlich wie=Gletscherschmelze
|ähnlich wie=Gletscher im Klimawandel
|ähnlich wie=Permafrost
|ähnlich wie=Permafrost
|ähnlich wie=Schnee
|ähnlich wie=Schnee

Aktuelle Version vom 17. Juli 2023, 21:28 Uhr

Ausdehnung von Sommer- (hellblau) und Wintereis (weiß) in der Arktis und Antarktis im Jahr 2005/06

Als Meereis bezeichnet man das gefrorene Meerwasser der polaren Ozeane. Es spielt eine wichtige Rolle im Klimasystem der Erde.

Die Bildung von Meereis

Im Unterschied zu dem Eis der großen Eisschilde, das durch Niederschlag entsteht, wird Meereis hauptsächlich durch das Gefrieren von Meerwasser gebildet. Während der Gefrierpunkt von Süßwasser bei 0 °C liegt, befindet sich der von Meerwasser je nach Salzgehalt deutlich darunter. Im Meerwasser der Polargebiete bilden sich bei einer Wassertemperatur von unter -1.8 ºC millimetergroße Eiskristalle, die sich an der Wasseroberfläche ansammeln und zu einer Eisdecke zusammenfrieren. In den Prozess des Gefrierens selbst werden nur Wassermoleküle einbezogen, während die viel größeren Salzionen nicht in das Kritallgitter von Eis eingebaut weren können und größtenteils im Meerwasser zurück bleiben und dadurch dessen Salzgehalt und damit auch dessen Dichte erhöhen. Teilweise wird das Salz aber auch im Meereis selbst in kleinen Hohlräumen als flüssige, salzige Lake eingebaut,[1] so dass Meereis 25-50 % des Salzgehalts des Meerwassers enthält, aus dem es entstanden ist.[2] Der Salzgehalt des Meerwassers schwankt jedoch im Laufe des Jahres. Aus neu gebildetem Meereis sickert die salzige Lake u.a. aufgrund ihrer hohen Dichte langsam nach unten aus, so dass am Ende des Winters der Salzgehalt von Meereis nur noch etwa ein Fünftel des ursprünglichen Gehalts bei der Bildung des Eises beträgt. Während des Sommers verliert das Eis weiteres Salwasser, weil das an der Oberfläche entstehende Schmelzwasser durch das Eis sickert und die Sole langsam herausdrückt, so dass am Ende nur noch ca. 10 % des anfänglichen Salzgehaltes übrigbleiben.[3] Meereis dehnt sich nicht nur in der Fläche aus, sondern wächst auch an der Basis der Eisschicht, sodass sie dicker wird.

Wechselwirkungen mit dem Klimasystem

Meereis und Atmosphäre

Reflexion von Sonnenstrahlen auf weißer Eisoberfläche
Absorption von Sonnenstrahlen durch den Ozean

Meereis ist nicht nur ein wichtiger Indikator für Klimaänderungen, sondern auch ein bedeutender Klimafaktor. Von klimatisch großer Bedeutung ist die Eis-Albedo-Rückkopplung. Die hohe Albedo von 60 bis 90 % (letztere bei Neuschnee auf dem Eis) führt dazu, dass die einfallende Sonnenstrahlung größtenteils wieder in den Weltraum reflektiert wird. Besonders Frischschnee besitzt gegenüber Meereis eine höhere Albedo (0,8-0,9 im Vergleich zu 0,5-0,7).[4] Wenn also im Frühling die solare Einstrahlung wieder stärker und länger wird, reflektiert schneebedecktes Meereis mehr Strahlung als schneefreies Meereis und beginnt somit später zu schmelzen.[5] Dadurch erklären sich zu einem großen Teil die geringen Temperaturen in den hohen Breiten und die starken jahreszeitlichen Schwankungen der Temperatur in den Gebieten mit wechselnder Eisbedeckung. Auch bei längerfristigen Änderungen der Temperatur verstärkt die Eis-Albedo-Rückkopplung die Erwärmung bzw. Abkühlung. So wird die gegenwärtige stärkere Erwärmung der Arktis zumindest teilweise auf diesen Verstärkungseffekt zurückgeführt.

Meereis wirkt sich aber nicht nur auf die Temperatur der Atmosphäre aus, sondern besitzt auch einen Einfluss auf die atmosphärische Zirkulation. Die tiefen Temperaturen über dem Meereis bewirken einen starken Temperaturgradienten zu den angrenzenten wärmeren Gebieten niederer Breiten. Dadurch wird ein relativ stabiler zirkumpolarer Wind aus östlicher Richtung aufrecht gehalten, der das Eindringen warmer Luft aus den mittleren Breiten ebenso weitgehend verhindert wie das Ausbrechen von Kaltluft von den Polargebieten in die mittleren Breiten. Das starke Abschmelzen des arktischen Meereises in den letzten Jahren hat nun gerade diese Barriere durchlässiger gemacht und ist möglicherweise für einige der kalten Winter in Europa und Nordamerika in den letzten Jahren verantwortlich (vgl. Arktisches Meereis und Kalte Winter in Europa).

Meereis und Ozean

Wärmeaustausch zwischen Atmosphäre und Ozean mit und ohne Meereis

Meereis bildet außerdem eine wichtige Barriere zwischen Ozean und Atmosphäre und verhindert weitgehend deren Austausch von Bewegung (Wind und Meeresströmungen) und Gasen (Wasserdampf und CO2). Auch in Bezug auf Wärme wirkt das Meereis als isolierende Schicht zwischen kalter polarer Luft, die sich zum Winter hin schneller abkühlt als der Ozean, und relativ warmem Wasser. Während der Wintermonate dehnt sich das Meereis nicht nur in der Fläche aus, sondern wird auch dicker. Aber je dicker das Eis wird, desto mehr schirmt es den Ozean vom Wärmeverlust an die Atmosphäre ab. Das Meerwasser unter dem Eis bleibt daher relativ warm und verringert das Eiswachstum von unten her. [6] [5] Andere Faktoren, die die Stärke dieser Isolation beeinflussen, sind Salzgehalt und Temperatur des Meereises sowie Schnee auf dem Meereis: Je höher der Salzgehalt oder die Temperatur des Eises (z.B. bei jungem Eis), desto schlechter die Wärmeleitfähigkeit, und umso stärker ist dann auch die Isolation. [7] Auch Schnee leitet Wärme sehr schlecht. Wenn also Schnee auf Meereis fällt, wird der Ozean noch stärker isoliert und das Wachstum von Meereis an der Basis weiter verringert. [5] [2]

Wenn das Eis im Sommer nicht komplett abschmilzt, wird es mehrjähriges Eis genannt. Es nimmt im nächsten Winter zunächst weiter an Dicke zu, isoliert dadurch jedoch immer stärker den darunterliegenden Ozean von der kalten Atmosphäre und vermindert wie erläutert das Eiswachstum unter Wasser. Hinzu kommt, dass sich auf diesem mehrjährigen Eis früh eine Schneedecke bildet, die in den Wintermonaten an Mächtigkeit zunimmt und das Eis und somit den Ozean sehr effektiv isoliert. Diese beiden Effekte haben zur Folge, dass mehrjähriges Eis sehr viel langsamer dicker wird als einjähriges Eis. Letzteres kann im Frühjahr sogar die Dicke des mehrjährigen Eises übertreffen.[8] Insgesamt hat die winterliche Isolation des Wassers zur Folge, dass der Ozean im nächsten Sommer deutlich wärmer ist als ohne das winterliche Meereis, was nach der Eisschmelze zu wärmeren Sommern führt. Im Sommer erwärmt sich die Atmosphäre schneller als der Ozean. Kaltes Oberflächenwasser, über dem es während des Winters kein Eis gegeben hat, bremst diese Erwärmung relativ stark ab. Warmes Wasser, das unter dem schmelzenden Eis frei wird, dämpft die Erwärmung der Atmosphäre deutlich weniger.

Dieser Mechanismus hat nun allerdings zur Folge, dass es durch das Abschmelzen von Meereis durch den gegenwärtigen Klimawandel nicht nur eine positive Rückkopplung durch die abnehmende Albedo gibt, die den Schmelzprozess weiter antreibt, sondern auch eine negative Rückkoplung, die dem entgegenwirkt. Wenn das Eis in einem Sommer stärker abschmilzt als im vorhergegangenen, gibt es zum nächsten Winter hin mehr eisfreies Wasser, von dem deutlich mehr Wärme an die Atmosphäre entweicht als im Winter zuvor. Über dem dadurch kühleren Wasser kann sich daher früher und schneller Eis bilden, so dass nach einem Sommer mit geringer Eisfläche sich im nächsten Winter zumeist eine wieder größere Eisfläche bildet. Darin wirkt auch mit, dass es sich bei dem neuen Eis um relativ dünnes Eis handelt, das den Ozean weniger gut isoliert und vor Auskühlung schützt als dickeres Eis. Hinzu kommt, dass auch die Schneedecke auf dem neuen Eis relativ dünn ist und daher ebenfalls weniger gut isolierend wirkt.[1] Die größere Eisfläche im Winter hat dann auch zur Folge, dass das Eis im nächsten Sommer weniger stark abschmilzt als im Sommer zuvor. So gab es in der Arktis nach den Jahren mit einer sehr geringen sommerlichen Eisbedeckung 2007 und 2012 in den Folgejahren 2008 und 2013 wieder eine deutlich größere Eisausdehnung (vgl. Arktisches Meereis).

Anders als bei Eisschilden erfolgt die Reaktion von Meereis auf klimatische Veränderungen nahezu unmittelbar. Die Ausdehnung von Meereisgebieten und die Dicke des Meereises reagieren daher deutlich auf die jahreszeitlichen Temperaturänderungen. So schwankt die Meereisausdehnung in der Arktis zwischen 15 Millionen km2 im Winter und 4-5 Millionen km2 im Sommer und in der Antarktis sogar zwischen 18 und 3 Millionen km2. Diese extremen jahreszeitlichen Schwankungen machen es schwierig, längerfristige Trends zu bestimmen. Auch die Position von Meereis ist sehr viel dynamischer als die von Eis auf dem Land. Sowohl Wind als auch Ozeanströmungen führen zu Verschiebungen der Meereisflächen: Auf kleinen Zeitskalen ist Wind der entscheidende Antrieb, während über einen längeren Zeitraum die Meeresströmungen ausschlaggebend sind.[6]

Das arktische Meereis

Das antarktische Meereis

Einzelnachweise

  1. 1,0 1,1 Notz, D. (2011): Meereis in der Arktis und Antarktis, in: José L. Lozán et al. (Hrsg.): Warnsignal Klima: Die Meere - Änderungen und Risiken. Wissenschaftliche Auswertungen, Hamburg, 96-101; aktualisierte Fassung online
  2. 2,0 2,1 IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, 4.2.1
  3. Notz, D. (2015): Bedeutung des Meereises für das Weltklima, in: José L. Lozán, Hartmut Graßl, Dieter Kasang, Dirk Notz & Heidi Escher-Vetter: Warnsignal Klima. Das Eis der Erde, 189-193
  4. Tom Markvart, Luis CastaŁżer (2003). Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier. ISBN 1-85617-390-9.
  5. 5,0 5,1 5,2 Fichefet, T., Tartinville, B., Goosse, H. (2000): Sensitivity of the Antarctic sea ice to the thermal conductivity of snow. Geophysical Research Letters, Vol. 27, No.3, pp. 401-404.
  6. 6,0 6,1 Peixoto, J.-P., Oort, A. H.: Physics of Climate (1992). Springer-Verlag New York, ISBN: 978-0-88318-712-8.
  7. Wadhams, P.: Ice in the Ocean (2000). Overseas Publishers Association, Gordon and Breach Science Publishers imprint. ISBN 90-5699-296-1.
  8. Notz, D. (2010): Das große Schmelzen: Meereis im Klimawandel Max-Planck-Gesellschaft, Tätigkeitsbericht 2009/10

Literatur

  • Notz, D. (2011): Meereis in der Arktis und Antarktis, in: José L. Lozán et al. (Hrsg.): Warnsignal Klima: Die Meere - Änderungen und Risiken. Wissenschaftliche Auswertungen, Hamburg, 96-101; aktualisierte Fassung online
  • Haas, C. (2005): Auf dünnem Eis? - Eisdickenänderungen im Nordpolarmeer, in: José L. Lozán / Hartmut Graßl / Hans-W. Hubberten / Peter Hupfer / Ludwig Karbe / Dieter Piepenburg (Hrsg.): Warnsignale aus den Polarregionen. Wissenschaftliche Auswertungen, Hamburg, 97-101
  • Bareiss, J., K. Görgen, A. Helbig (2005): Arktisches Meereis - Ursachen der Variabilität und Trends in den vergangenen 30 Jahren, in: José L. Lozán / Hartmut Graßl / Hans-W. Hubberten / Peter Hupfer / Ludwig Karbe / Dieter Piepenburg (Hrsg.): Warnsignale aus den Polarregionen. Wissenschaftliche Auswertungen, Hamburg, 218-225

Weblinks

  • Meereisportal Hintergrundinformationen zum Thema Meereis, tagesaktuelle Meereiskarten von Arktis und Antarktis sowie unterschiedlichen Basisdaten für die eigene Weiterverarbeitung
  • Meereis Datenportal Meereisdaten monatlich und täglich (2002 bis aktuell) werden in Karten angezeigt
  • Notz, D. (2010): Das große Schmelzen: Meereis im Klimawandel Max-Planck-Gesellschaft Tätigkeitsbericht 2009/10
  • Ice in the Sea UNEP-Report über das Meereis auf der Erde


Klimadaten zum Thema

Klimadaten zum Thema selbst auswerten? Hier können Sie aus Regionaldaten zur Arktis, Regionaldaten zur Antarktis und globalen Daten eigene Karten erzeugen.

Hier finden Sie eine: Anleitung zur Visualisierung der Daten.




Klimamodell-Experimente zum Thema

Mit dem einfachen Klimamodell Monash Simple Climate Model (MSCM) können Experimente zur Bedeutung von Eis und Schnee im Klimasystem durchgeführt werden:

Schülerarbeiten zum Thema

Schülerarbeiten zum Thema des Artikels aus dem Schulprojekt Klimawandel:


Lizenzangaben

Dieser Artikel ist ein Originalartikel des Klima-Wiki und steht unter der Creative Commons Lizenz Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland. Informationen zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können in den meisten Fällen durch Anklicken dieser Mediendateien abgerufen werden und sind andernfalls über Dieter Kasang zu erfragen.
Kontakt: Dieter Kasang