Indirekte Nutzung von CO2: Unterschied zwischen den Versionen

Aus Klimawandel
KKeine Bearbeitungszusammenfassung
Zeile 22: Zeile 22:


== Klimanutzen ==
== Klimanutzen ==
Anders als CCS- sind CCU-Maßnahmen ursprünglich und auch gegenwärtig noch hauptsächlich durch die Nutzung von Kohlendioxid als Rohstoff motiviert. Die Nutzung von CO<sub>2</sub> wurde daher in einigen Sektoren wie der tertiären Ölförderung oder in Treibhäusern auch weit vor der Klimakrise praktiziert. Erst in jüngster Zeit hat sich der Anspruch ergeben, auch durch CCU eine Reduzierung von CO2-Emissionen zu bewirken. Der zukünftige Markt für die CO<sub>2</sub>-Nutzung ist jedoch sehr schwer zu bestimmen. Ein Problem besteht in der begrenzten Verfügbarkeit von verlässlichen Daten über die Technologien zur CO2-Umwandlung, wodurch auch die vielfach geforderten Lebenszyklus-Analysen der CO<sub>2</sub>-Nutzung von der Quelle bis zum endgültigen Verbleib quantitativ kaum zu erfüllen sind. Schätzungen zur Aufnahmekapazität in CCU-Maßnahmen reichen von 1-7 Gt CO<sub>2</sub> in 2030, wobei der höhere Wert als extrem optimistisch gilt. Die meisten CO<sub>2</sub>-Umwandlungstechnologien befinden sich noch in einem frühen Stadium der Entwicklung.  
Anders als CCS- sind CCU-Maßnahmen ursprünglich und auch gegenwärtig noch hauptsächlich durch die Nutzung von Kohlendioxid als Rohstoff motiviert. Die Nutzung von CO<sub>2</sub> wurde daher in einigen Sektoren wie der tertiären Ölförderung oder in Treibhäusern auch weit vor der Klimakrise praktiziert. Erst in jüngster Zeit hat sich der Anspruch ergeben, auch durch CCU eine Reduzierung von CO<sub>2</sub>-Emissionen zu bewirken. Der zukünftige Markt für die CO<sub>2</sub>-Nutzung ist jedoch sehr schwer zu bestimmen. Ein Problem besteht in der begrenzten Verfügbarkeit von verlässlichen Daten über die Technologien zur CO<sub>2</sub>-Umwandlung, wodurch auch die vielfach geforderten Lebenszyklus-Analysen der CO<sub>2</sub>-Nutzung von der Quelle bis zum endgültigen Verbleib quantitativ kaum zu erfüllen sind. Schätzungen zur Aufnahmekapazität in CCU-Maßnahmen reichen von 1-7 Gt CO<sub>2</sub> in 2030, wobei der höhere Wert als extrem optimistisch gilt. Die meisten CO<sub>2</sub>-Umwandlungstechnologien befinden sich noch in einem frühen Stadium der Entwicklung.  


Im Vergleich zum Carbon Capture and Storage (CCS) ist die CO<sub>2</sub>-Nutzung (CCU) deutlich weniger in der Lage, die Emissionen von Treibhausgasen zu verringern. 2060 wird nach Szenarien der IEA die CO2-Einsparung durch CCU auch im günstigsten Fall unter 1 Gt liegen, während bei der direkten Speicherung (CCS) von mindestens 10 Gt CO2 auszugehen ist.<ref name=IEA 2019" />  Die IEA sieht daher in CCU keine Alternative zur direkten Speicherung von CO<sub>2</sub>, sondern allenfalls eine Ergänzung. Abgesehen von der zeitweiligen und in wenigen Fällen dauerhaften CO<sub>2</sub>-Speicherung kann CCU für den CCS-Prozess aber unterstützend wirken, indem es etwa neue und ökonomisch günstige Methoden der CO<sub>2</sub>-Abscheidung oder eine verbesserte CO2-Transportinfrastruktur entwickelt bzw. schon entwickelt hat. Zur Erreichung der Pariser Klimaziele sei jedoch von der CO<sub>2</sub>-Nutzung nur ein geringer Anteil zu erwarten. Ähnlich kommen auch De Kleijne et al. (2022)<ref name="de Kleijne 2022">de Kleijne, Kiane, S. V. Hanssen, L. van Dinteren, M.A.J. Huijbregts, R. van Zelm & H. de Coninck (2022): Limits to Paris compatibility of CO2 capture and utilization. One Earth 5, Elsevier Inc. 168-185.</ref> zu dem Urteil, dass durch CCU-Technologien nur dann ein Beitrag zur Minderung der CO<sub>2</sub>-Konzentration geleistet werden kann, wenn das genutzte CO2 aus der Atmosphäre oder aus Biomasse stammt und permanent gespeichert wird.
Im Vergleich zum Carbon Capture and Storage (CCS) ist die CO<sub>2</sub>-Nutzung (CCU) deutlich weniger in der Lage, die Emissionen von Treibhausgasen zu verringern. 2060 wird nach Szenarien der IEA die CO<sub>2</sub>-Einsparung durch CCU auch im günstigsten Fall unter 1 Gt liegen, während bei der direkten Speicherung (CCS) von mindestens 10 Gt CO<sub>2</sub> auszugehen ist.<ref name=IEA 2019" />  Die IEA sieht daher in CCU keine Alternative zur direkten Speicherung von CO<sub>2</sub>, sondern allenfalls eine Ergänzung. Abgesehen von der zeitweiligen und in wenigen Fällen dauerhaften CO<sub>2</sub>-Speicherung kann CCU für den CCS-Prozess aber unterstützend wirken, indem es etwa neue und ökonomisch günstige Methoden der CO<sub>2</sub>-Abscheidung oder eine verbesserte CO<sub>2</sub>-Transportinfrastruktur entwickelt bzw. schon entwickelt hat. Zur Erreichung der Pariser Klimaziele sei jedoch von der CO<sub>2</sub>-Nutzung nur ein geringer Anteil zu erwarten. Ähnlich kommen auch De Kleijne et al. (2022)<ref name="de Kleijne 2022">de Kleijne, Kiane, S. V. Hanssen, L. van Dinteren, M.A.J. Huijbregts, R. van Zelm & H. de Coninck (2022): Limits to Paris compatibility of CO<sub>2</sub> capture and utilization. One Earth 5, Elsevier Inc. 168-185.</ref> zu dem Urteil, dass durch CCU-Technologien nur dann ein Beitrag zur Minderung der CO<sub>2</sub>-Konzentration geleistet werden kann, wenn das genutzte CO<sub>2</sub> aus der Atmosphäre oder aus Biomasse stammt und permanent gespeichert wird.


== Einzelnachweise ==
== Einzelnachweise ==

Version vom 19. November 2022, 15:35 Uhr

CO2-Quellen, indirekte und direkte Nutzung

Einleitung

Kohlendioxid kann grundsätzlich entweder nach dem Carbon-Capture-and-Storage-Verfahren (CCS) gespeichert oder nach dem Carbon-Capture-and-Utilization-Verfahren (CCU) als Produkt genutzt werden. Dabei teilt sich die CO2-Nutzung in die direkte Nutzung, etwa in der Getränkeindustrie, in Treibhäusern oder in der Tertiären Ölförderung, und in die indirekte Nutzung, bei der Kohlendioxid in einen neuen Stoff umgewandelt wird. Zunächst stellt sich bei der CO2-Nutzung die Frage, ob sie überhaupt in einem solchen Umfang erfolgt bzw. erfolgen kann, dass der Klimawandel dadurch merklich abgeschwächt und ein erkennbarer Beitrag zur Erreichung der Pariser Klimaziele geleistet wird? Nach Schätzung der Internationalen Energieagentur[1] werden gegenwärtig rund 230 Mio. t CO2 jährlich genutzt, im Vergleich zu den weltweiten Emissionen von Kohlendioxid von 40 Gt CO2 ein verschwindend geringer Anteil von ca. einem halben Prozent. Der größte Einzelverbraucher von CO2 ist die Düngemittelindustrie durch die Herstellung von Harnstoff mit etwa 130 Mio. t CO2 pro Jahr, gefolgt von der tertiären Ölförderung mit 70-80 t CO2. Der globale Bedarf an CO2 in Treibhäusern ist unbekannt. Nur in einem sehr kleinen Teil der weltweiten Treibhäuser wird überhaupt CO2 zur Stimulierung des Pflanzenwachstums genutzt, wobei die Niederlande mit 5-6,3 Mio. t CO2 weit an der Spitze stehen.

Energiebedarf

Wie bei der Abscheidung von CO2 wird auch in der Nutzungsphase in der Regel Energie gebraucht. Am wenigsten gilt das für die direkte Nutzung. Die Anlagen zur Injektion von CO2 in Erdöl- oder Gaslagerstätten oder die Anreicherung der Luft in Treibhäusern mit CO2 dürften nur eine überschaubare Menge an Energie verbrauchen. Die industrielle Umwandlung von CO2 zur Herstellung von Treibstoffen, Chemikalien oder Baumaterialien ist jedoch mit einem z.T. gravierenden Energiebedarf verbunden, der gegenwärtig noch in einem hohen Maße aus fossilen Rohstoffen abgedeckt wird. Insbesondere gilt das für chemische Prozesse, in denen Wasserstoff genutzt wird, der gegenwärtig hauptsächlich aus Erdgas gewonnen wird.[2] Die Internationale Energieagentur[1] schätzt diesen Energiebedarf für 2030 auf 11,7 Petawattstunden (PWh). Diese Menge ist im Verhältnis zur gegenwärtigen globalen Stromerzeugung von 26,7 PWh und dem für 2030 in einem Paris-konformen Klimaschutzszenario geschätzten Stromverbrauch von 1,7 PWh für den industriellen Sektor zu sehen. Das Umweltbundesamt kommt zusammenfassend zu dem Schluss, dass „die Verfügbarkeit von CO2 als Rohstoff … kein Kohlenstoff-, sondern ein Energieproblem“ ist.[3]

Für die Umwandlung von CO2 und die Herstellung höherwertiger chemischer Produkte wie Methan und Methanol aus 100 Mio. t CO2 liegt der Energiebedarf laut Umweltbundesamt[3] bei 1.000 Terawattstunden (TWh). In Deutschland wäre das doppelt so viel wie der gesamte jährliche Verbrauch von 513 TWh. Dieser Bedarf kann in Deutschland auf absehbare Zeit nur sehr begrenzt durch erneuerbare Energien abgedeckt werden, u.a. weil Energie aus Sonne und Wind starken zeitlichen Schwankungen unterliegt. Würde stattdessen für die Umwandlung von CO2 auf fossile Energien zurückgegriffen, kann das zu einer mehrfach höheren CO2-Emission führen als bei der direkten Nutzung von Erdgas.[3] Für Europa wurde berechnet, dass für eine Nutzung von 210 Mio. t CO2 als Ersatz für fossilbasierte Kohlenstoffquellen ein Strombedarf von 4900 TWh anfallen würde, was dem Sechsfachen des 2015 erzeugten regenerativen Stroms in der EU entspräche.[4] Die Herstellung von Polymeren auf der Basis von Kohlendioxid, die als Grundstoff für die Produktion von Plastik, Schaumstoffen und Harzen verwendet werden und 50% CO2 nach Gewicht beinhalten können, kommt dagegen bei der Umwandlung mit relativ wenig Energie aus.[1]

Speicherung

Im Gegensatz zu CCS wird Kohlendioxid bei der Nutzung nur über die Lebensdauer der erzeugten Produkte (z.B. Treibstoffe, Chemikalien, Baumaterialien) gespeichert. Die Speicherung variiert dabei stark je nach Produkt von weniger als einem Jahr bei Treibstoffen, bis zu 10 Jahren für die meisten chemischen Zwischenprodukten und bis zu Hunderten von Jahren bei Polymeren und zu Tausenden von Jahren bei Baumateriealien.[1] Die zeitlich begrenzte Speicherung wird oft als Argument gegen die Klimawirksamkeit von CCU-Verfahren angeführt. So schreibt etwa das Umweltbundesamt[3] in seiner Bewertungsanalyse von CCU: „Wird Kohlenstoff mehrfach genutzt, so verlagert sich die Emission bis nach der letzten Nutzung...Eine CCU-Maßnahme ist also keine Klimaschutzmaßnahme, die fossile, treibhausrelevante Emissionen mindern kann.“ Demgegenüber rechnet die IEA[1] vor, dass bei zweimaliger Nutzung von CO2, z.B. bei der Verbrennung des ursprünglichen Energieträgers und dann für die Herstellung eines Treibstoffes oder einer Chemikalie 50% der CO2-Menge eingespart werden, wenn dadurch bei dem zweiten Prozess die Nutzung von neuer fossiler Energie eingespart wird. Die Nutzung bzw. Speicherung in einem Produkt ist im Hinblick auf die Klimawirksamkeit auch immer dahin zu betrachten, inwieweit dadurch andere fossile Energieträger substituiert werden.

Weniger temporär ist die Bindung von CO2 in Zement und Beton. Technologien zur Nutzung von Kohlenstoff in der Bauindustrie können einerseits während der Aushärtungsphase des Betons eingesetzt werden, andererseits beim Mischen von Beton. Die weltweite Bevölkerungszunahme und Verstädterung lassen auch zukünftig einen hohen Bedarf an Betonbaumaterial erwarten und damit auch eine breite Möglichkeit, CO2 zu speichern. Schätzungen gehen davon aus, dass um die Mitte des Jahrhunderts 0,1-1,4 Gt CO2 auf diese Weise gebunden werden könnten.[5] Die Nutzung von CO2 kann auch wie bei der tertiären Ölförderung (OER) in eine anschließende dauerhafte Speicherung des Kohlendioxids übergehen. Das OER-Verfahren wird daher auch als eine Mischform von CO2-Nutzung und -Speicherung eingestuft und als Carbon Capture, Utilization and Storage (CCUS) bezeichnet.[1]

Kosten und Marktchancen

Die Motivation zur Nutzung von CO2 leitet sich ursprünglich nicht aus dem Klimaschutz ab, sondern war vor allem ökonomisch bedingt. Der Markt für Produkte und Dienstleistungen aus CO2 wird zukünftig vor allem dann expandieren, wenn sie im Vergleich zu den konventionell produzierten Produkten konkurrenzfähig sind, und das hängt vor allem von den Kosten ab.

Die Preise für die industrielle Abscheidung und Reinigung von CO2 variieren stark je nach Quelle zwischen 15 und 80 US$ pro Tonne CO2. So liegen sie bei der Abscheidung aus Erdgas bei 15-25 US$ und aus der Eisen- und Stahlproduktion bei 60-100 US$. Noch teurer ist das DAC-Verfahren bzw. die Abscheidung von CO2 aus der Luft mit 94-132 US$ pro t CO2, bedingt vor allem durch den hohen Energiebedarf. Auch die Transportkosten von CO2 zum Endverbraucher können abhängig von der Entfernung und der Transportart (Pipeline, Schiff, LKW) mit signifikanten Kosten verbunden sein.[1]

Für den Umwandlungsprozess von CO2 in zahlreiche Produkte spielt vor allem Wasserstoff eine zentrale Rolle. Bei der gängigsten Art wird Wasserstoff aus Erdgas durch Dampfreformierung gewonnen, wobei mit Hilfe von Wasserdampf der Wasserstoff vom Kohlenstoff getrennt wird. Dabei fällt jedoch pro kg H2 eine beträchtliche Menge von 10 kg CO2 an. Ein Speicherverfahren für Kohlendioxid zur Dekarbonisierung des Verfahrens würde Kosten von 1,5-2,5 US$ verursachen. Alternativ kann Wasserstoff aus der Elektrolyse mit einem erheblichen Energieaufwand gewonnen werden, allerdings mit Kosten von 2,5-6,0 US$ pro kg H2. Nach Eischätzung der IEA[1] wird die Wasserstofferzeugung aus fossilen Brennstoffen in den meisten Regionen der Welt vorläufig die kostengünstigste Option bleiben. Die Kosten für die Wasserstoffproduktion sind der Hauptgrund dafür, dass die CO2-basierten Kraftstoffe und Chemikalien derzeit um ein Vielfaches teurer als bei konventionellen Produktionsverfahren sind. Eine kommerzielle Produktion ist nur in Regionen möglich, wo sowohl günstige erneuerbare Energie als auch Kohlendioxid als Grundstoff zur Verfügung stehen wie auf Island oder Chile. Eine Ausnahme stellen kohlendioxidbasierte Polymere dar, deren Markt jedoch relativ klein ist. Auch die Produktion und Behandlung von Baumaterialien wie Zement und Beton sind heute schon konkurrenzfähig.

Klimanutzen

Anders als CCS- sind CCU-Maßnahmen ursprünglich und auch gegenwärtig noch hauptsächlich durch die Nutzung von Kohlendioxid als Rohstoff motiviert. Die Nutzung von CO2 wurde daher in einigen Sektoren wie der tertiären Ölförderung oder in Treibhäusern auch weit vor der Klimakrise praktiziert. Erst in jüngster Zeit hat sich der Anspruch ergeben, auch durch CCU eine Reduzierung von CO2-Emissionen zu bewirken. Der zukünftige Markt für die CO2-Nutzung ist jedoch sehr schwer zu bestimmen. Ein Problem besteht in der begrenzten Verfügbarkeit von verlässlichen Daten über die Technologien zur CO2-Umwandlung, wodurch auch die vielfach geforderten Lebenszyklus-Analysen der CO2-Nutzung von der Quelle bis zum endgültigen Verbleib quantitativ kaum zu erfüllen sind. Schätzungen zur Aufnahmekapazität in CCU-Maßnahmen reichen von 1-7 Gt CO2 in 2030, wobei der höhere Wert als extrem optimistisch gilt. Die meisten CO2-Umwandlungstechnologien befinden sich noch in einem frühen Stadium der Entwicklung.

Im Vergleich zum Carbon Capture and Storage (CCS) ist die CO2-Nutzung (CCU) deutlich weniger in der Lage, die Emissionen von Treibhausgasen zu verringern. 2060 wird nach Szenarien der IEA die CO2-Einsparung durch CCU auch im günstigsten Fall unter 1 Gt liegen, während bei der direkten Speicherung (CCS) von mindestens 10 Gt CO2 auszugehen ist.[1] Die IEA sieht daher in CCU keine Alternative zur direkten Speicherung von CO2, sondern allenfalls eine Ergänzung. Abgesehen von der zeitweiligen und in wenigen Fällen dauerhaften CO2-Speicherung kann CCU für den CCS-Prozess aber unterstützend wirken, indem es etwa neue und ökonomisch günstige Methoden der CO2-Abscheidung oder eine verbesserte CO2-Transportinfrastruktur entwickelt bzw. schon entwickelt hat. Zur Erreichung der Pariser Klimaziele sei jedoch von der CO2-Nutzung nur ein geringer Anteil zu erwarten. Ähnlich kommen auch De Kleijne et al. (2022)[6] zu dem Urteil, dass durch CCU-Technologien nur dann ein Beitrag zur Minderung der CO2-Konzentration geleistet werden kann, wenn das genutzte CO2 aus der Atmosphäre oder aus Biomasse stammt und permanent gespeichert wird.

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 IEA (2019), Putting CO2 to Use, Paris
  2. Palm, E., & A. Nikoleris (2021): Conflicting expectations on carbon dioxide utilisation. Technol. Anal. Strateg. Manag. 33, 217–228. doi: 10.1080/09537325.2020.1810225
  3. 3,0 3,1 3,2 3,3 UBA (2021): Diskussionsbeitrag zur Bewertung von Carbon Capture and Utilization
  4. ACATECH (Hrsg., 2018): CCU und CCS – Bausteine für den Klimaschutz in der Industrie (acatech POSITION), München
  5. Ravikumar, D., D. Zhang, G. Keoleian, et al. (2021): Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit. Nat Commun 12, 855 (2021)
  6. de Kleijne, Kiane, S. V. Hanssen, L. van Dinteren, M.A.J. Huijbregts, R. van Zelm & H. de Coninck (2022): Limits to Paris compatibility of CO2 capture and utilization. One Earth 5, Elsevier Inc. 168-185.


Lizenzhinweis

Dieser Artikel ist ein Originalartikel des Klima-Wiki und steht unter der Creative Commons Lizenz Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland. Informationen zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können in den meisten Fällen durch Anklicken dieser Mediendateien abgerufen werden und sind andernfalls über Dieter Kasang zu erfragen.