Methan

Aus Klimawandel

Atmosphärische Konzentrationsänderungen

Gemessen an seinem Strahlungsantrieb ist Methan nach Kohlendioxid das zweitwichtigste langlebige und von Menschen emittierte Treibhausgas. Während der letzten 650 000 Jahre lag die Methankonzentration der Atmosphäre zwischen 400 ppb während der Kaltzeiten und 700 ppb während der Warmzeiten. Sie hat sich seit 1750 von ca. 700 ppb auf ca. 1775 ppb im Jahre 2005 mehr als verdoppelt. Der aktuelle Wert ist in den letzten 650 000 Jahren beispiellos. Während frühere Daten aus in Eis oder Firn eingeschlossenen Luftbläschen stammen, wird die Methankonzentration seit 1983 direkt in der Atmosphäre und global repräsentativ gemessen. In dieser Zeit ist die Methankonzentration noch einmal um 30% angestiegen. Die Wachstumsrate der Methanzunahmen ist allerdings von 1% oder 14 ppb pro Jahr um 1980 auf nahezu Null in der Zeit 2000-2005 zurückgegangen. Dieser Rückgang ist in der Forschung bis heute nicht hinreichend verstanden. Die Hypothesen reichen von einer geringeren anthropogenen Emission bis zu Veränderungen in den Senken. Bei der wichtigsten Senke, der Reaktion mit Hydroxylradikalen (OH), lassen sich allerdings keine nennenswerten Änderungen nachweisen.[1] Aufgrund der Reaktion mit OH-Radikalen in der höheren Atmosphäre beträgt die Lebensdauer von Methan nur 12 Jahre. Dabei entsteht jedoch CO2, welches ebenfalls ein Treibhausgas ist und eine deutlich längere Verweilzeit in der Atmosphäre hat. Die wichtigsten anthropogenen Methanquellen sind unvollständige Verbrennungen, Mülldeponien und Bergwerke, insbesondere aber auch landwirtschaftliche Tätigkeiten wie der Nassreisanbau und die Viehzucht. Die vom Menschen in großer Zahl gezüchteten Wiederkäuer wie Rinder und Schafe emittieren beträchtliche Methanmengen.

Schwankungen in der Zuwachsrate

Methankonzentration 1987-2009

Auffällig an der Zuwachsrate der Methankonzentration sind die starken jährlichen Schwankungen. Für einige dieser Schwankungen in den letzten 25 Jahren sind Erklärungen versucht worden. So ist der Abfall der Zuwachsrate im Jahre 1992 mit dem Ausbruch des Mt. Pinatubo in Verbindung gebracht worden. Bei dem Vulkanausbruch sind große Mengen an Aerosolen und Schwefeldioxid in die untere Stratosphäre geschleudert worden, die die photochemischen Prozesse und die Entfernung von CH4 durch OH negativ beeinflusst haben sollen. Möglicherweise waren auch durch die geringeren Temperaturen und Niederschläge infolge des Pinatubo-Ausbruchs die Emissionen aus Feuchtgebieten reduziert. Umgekehrt hat die deutliche Zunahme der Wachstumsrate 1998 nach Ansicht mancher Forscher mit der Erwärmung durch den El Niño 1997/98 zu tun, die die Emission aus Feuchtgebieten und die Verbrennung von Biomasse in der borealen Klimazone gefördert haben könnte.[1]

Quellen

Natürliche und anthropogene Methanquellen um 1990[2]

Methan (CH4) ist ein Treibhausgas, das sowohl aus natürlichen (z.B. Feuchtgebieten, Termiten, Ozean und Erdkruste) als auch anthropogenen Quellen (z.B. Reisfeldern, Rinderzucht, Mülldeponien oder Erdgasgewinnung und -transport) stammt. Im Prinzip kann es überall dort entstehen, wo anaerobe Bedingungen herrschen, d. h. Sauerstoffmangel, so dass organisches Material bei der Zersetzung nicht zu Kohlendioxid oxidiert werden kann. Die Emissionen aus den einzelnen Quellen können quantitativ nur sehr grob abgeschätzt werden. Global werden jährlich ungefähr 0,6 Gt emittiert, wovon 60 % aus anthropogenen Quellen stammen. Eine möglicherweise bedeutende Quelle könnte das in großen Mengen an den Kontinentalhängen der Ozeanböden in Tiefen von ca. 400-1000 m lagernde Methanhydrat bilden, eine unter hohem Druck und bei Temperaturen um den Gefrierpunkt entstehende Verbindung aus Wasser und Methan. Die gegenwärtig dort eingebundene Methanmenge wird auf ca. 4000 Gigatonnen geschätzt (eine Gigatonne entspricht einer Milliarde (109) Tonnen oder einer Billion (1012) Kilogramm).[1] Nach Meinung mancher Forscher könnte eine Erwärmung des Meerwassers durch eine globale Temperaturzunahme die eisartigen Methanhydrate zerfallen lassen und zur Freisetzung von Methan führen. Methan kann sich im Wasser mit gelöstem Sauerstoff zu Kohlendioxid verbinden, das dann zusammen mit nicht reagiertem Methan in die Atmosphäre aufsteigen kann. Zu einer gewaltigen Methanfreisetzung dieser Art soll es vor etwa 55 Millionen Jahren im Paläozän/Eozän (zu Beginn des Känozoikums) gekommen sein. Die Folge war ein starker Temperaturanstieg in den höheren Breiten um 5-8 °C.[3] Als Ursache für diese Methanfreisetzung werden sowohl eine Erwärmung des Ozeans um 4-6 °C durch Veränderungen in der ozeanischen Zirkulation, die durch den allgemeinen Erwärmungstrend zu Beginn des Känozoikums angestoßen worden sein könnten, als auch tektonisch verursachte Erdrutsche an den Kontinentalhängen diskutiert.[4] Während der Zeitraum der früh-känozoischen Methanfreisetzuung im Umfang von 1500-2200 Gigatonnen (eine Gigatonne entspricht einer Milliarde (109) Tonnen oder einer Billion (1012) Kilogramm) auf 10 000 bis 20 000 Jahre geschätzt wird, hielt die dadurch verursachte globale Erwärmung 150 000 bis 220 000 Jahre an, mit der Folge von dramatischen Veränderungen für die marinen und terrestrischen Ökosysteme. Auch während des Quartärs soll es vor allem in den ersten Jahrzehnten am Beginn von Interstadialen, den sogenannten Dansgaard-Oeschger-Zyklen, zur schnellen Freisetzung von Methan aus Gashydraten am Meeresboden gekommen sein. Als Ursache wird eine Erwärmung des Meerwassers durch Veränderungen der thermohalinen Zirkulation um 2-3,5 °C angenommen. Begünstigt wurde der Zerfall der Methanhydrate zudem durch einen geringen Wasserdruck aufgrund des gegenüber heute um ca. 80 m niedrigeren Meeresspiegels.[5] Andere Untersuchungen halten eine nennenswerte Freisetzung von Methan aus Hydraten während der letzten 50 000 Jahre für ausgeschlossen, da die atmosphärischen Veränderungen der Methankonzentration zu Beginn der Interstadiale, wie sie aus Eisbohrkernen abgelesen werden können, viel zu langsam erfolgt seien. Vielmehr könnten die Methananstiege des Quartärs aus tropischen und borealen Festlandquellen erklärt werden.[6]

Gegenwärtig stammen etwa 10 Tg (= 10 Millionen Tonnen) CH4 pro Jahr aus Methanhydraten. Bei einer Erwärmung des Ozeans kann die freiwerdende Menge vielleicht erhöht werden. Eine qantitative Abschätzung ist jedoch nicht möglich. Historische Daten sprechen eher gegen eine plötzliche Freisetzung von größeren Methanmengen aus Methanhydraten.[7]. Innerhalb von 1000-100000 Jahren könnte die Methanfreisetzung aus Gashydraten jedoch eine sehr starke positive Rückkopplung anstoßen. Anthropogene Emissionen von 2000 GtC könnten schätzungswese noch einmal dieselbe Menge an Methan freisetzen.[1]

Senken

In der Atmosphäre hat Methan eine verhältnismäßig kurze Verweilzeit von 12 Jahren.[8] Dies liegt daran, dass es in Folge chemischer Reaktionen in der Atmosphäre abgebaut wird. Die wichtigste Senke ist die Reaktion mit OH in der Troposphäre:

OH + CH4 -> CH3 + H2O

Durch diesen Prozess werden pro Jahr 511 Tg Metan aus der Atmosphäre entfernt. Außerdem wird ein geringer Teil vom Boden aufgenommen (30 Tg/Jahr) und in der Stratosphäre durch Reaktion mit OH, Cl und O umgewandelt (40 Tg/Jahr).[1] Das Hydroxyl-Radikal (OH), das nicht nur Methan, sondern auch andere klimatisch und toxisch wichtige Spurenstoffe wie Stickoxide und Kohlenmonoxid kontrolliert, entsteht hauptsächlich durch die photolytische Spaltung von Ozon (O3 + hv -> O + O2). Elektronisch angeregte O-Atome reagieren anschließend mit Wasserdampf zu Hydroxyl-Radikalen:

O* + H2O -> 2 OH

Die im globalen Mittel wichtigsten Senken für OH sind die Reaktion mit Kohlenmonoxid (CO) und CH4. Es reagiert aber außerdem mit einer Reihe von anderen Spurengasen. Diese Reaktionen führen häufig zur Entstehung von H2O-Radikalen, durch die es über eine Reaktion mit O3 oder NO wieder zur Entstehung von OH kommt. Aufgrund dieser und anderer Reaktionen unterliegt auch die OH-Konzentration (und damit auch die Reaktion mit Methan) Schwankungen im Laufe der Zeit. Eine wichtige Rolle spielen in diesem Zusammenhang Waldbrände, die große Mengen an Kohlenmonoxid emittieren. So sind wahrscheinlich die starken Waldbrände in Indonesien als Folge des El Niño von 1997/98 für das Minimum der globalen OH-Konzentration in den letzten Jahrzehnten verantwortlich. Nach dem Maximum um 1990 und dem Minimum um 1997/98 hat die OH-Konzentration wieder zugenommen (Abb.).

Auswirkungen klimatischer Änderungen

Wie geologische Daten zeigen, werden Methanquellen und –senken auch durch klimatische Parameter wie Temperatur und Feuchtigkeit beeinflusst. Das ist vor allem für die Übergangsphasen zwischen Warm– und Kaltzeiten während des Eiszeitalters nachgewiesen. Beim Methan sind es vor allem die Feuchtgebiete, deren Methanemissionen durch klimatische Faktoren variiert werden, aber auch z.B. Reisfelder und die Verbrennung von Biomasse. Letztere prägt, wie oben gezeigt, auch die OH-Konzentration, die wichtigste Senke von Methan. Methan ist daher nicht nur ein wichtiges Treibhaugas, sondern wird selbst wiederum durch Klimaänderungen beeinflusst.

Methanemissionen aus den Feuchtgebieten werden stark durch die Temperatur und den Wasserstand beeinflusst. Höhere Temperaturen begünstigen die Zersetzungsprozesse bzw. machen sie beim Auftauen von Permafrost überhaupt erst möglich. Hohe Niederschläge und damit höhere Wasserstände fördern die anaeroben Bedingungen, unter denen es überhaupt erst zur Methanbildung kommt. Methanemissionen aus Feuchtgebieten sind die Hauptursache für die jährlichen globalen Schwankungen, aber auch von mehrjährigen Trends der Methanemissionen.

So ist zwar die Abnahme der Wachstumsrate der Methankonzentration in den 1990er Jahren in erster Linie auf die abnehmende anthropogene Emission durch den Zusammenbruch der Industrien im früheren Ostblock zurückzuführen. Singulär spielte aber auch die vorübergehende Abkühlung durch den Mt.-Pinatubo-Ausbruch 1991 eine Rolle. Geringere Temperaturen und geringere Niederschläge als Folge des Vulkanausbruchs haben die Methanemissionen in den Feuchtgebieten wahrscheinlich unterdrückt. Auch seit 1999 nahmen die Methanemissionen vor allem in den Feuchtgebieten der Tropen Asiens und Südamerikas über mehrere Jahre lang ab. Der Grund war eine größere Trockenperiode. Diese klimabedingte Abnahme maskierte vorübergehend die steigenden industriellen Emissionen durch den Wirtschaftsboom in China und anderen Ländern.

Für die zukünftige Entwicklung ergaben Modellsimulationen bei einer Zunahme der Temperatur um 2 °C und der Niederschläge um 10 % eine Erhöhung der Methanemissionen um 21 %. Bei einer Erwärmung um 3,4 °C (als Folge einer Verdoppelung der CO2-Konzentration der Atmosphäre) würde die Methanemission aus Feuchtgebieten nach Modellberechnungen sogar um 78 % zunehmen Als bedeutende Methanquelle der Zukunft wird vor allem das Auftauen von Permafrost in den hohen nördlichen Breiten eingeschätzt. Aber auch eine Erwärmung und Ausdehnung der nördlichen Feuchtgebiete wird sehr wahrscheinlich zu einer höheren Methanemission führen. Die gesamte im Permafrost der Nordhalbkugel gespeicherte Menge an Methan wird auf 7,5 bis 400 Gigatonnen Kohlenstoff (Gt C) geschätzt. Die Methanmenge in der Atmosphäre beträgt dagegen nur ca. 4 Gt C.

Der Klimawandel könnte auch eine noch wesentlich größere Methanquelle angreifen, nämlich die Methanhydrate in Ozeansedimenten, von denen langfristig ein Kipppunkt im Klimasystem drohen könnte, d.h. ein Umkippen des gegenwärtigen Klimas in einen neuen Zustand. Bei den Methanhydraten handelt es sich um unter hohem Druck und bei Temperaturen um den Gefrierpunkt entstandene Verbindungen aus Wasser und Methan, die an den Kontinentalhängen der Ozeanböden in Tiefen von ca. 400-1000 m liegen. Die gegenwärtig dort eingebundene Methanmenge ist sehr schwierig zu bestimmen und wird auf 500 bis 10 000 Gt C geschätzt. Auch eine relativ geringe Freisetzung hätte bei einem atmosphärischen Gehalt an Methan von etwa 4 Gt C in der Atmosphäre eine erhebliche Wirkung.

Wie könnte es zu einer solchen Methanfreisetzung kommen? Eine Erwärmung des Meerwassers durch eine globale Temperaturzunahme könnte die eisartigen Methanhydrate zerfallen lassen und zur Emission von Methan führen. Methan kann sich im Wasser mit gelöstem Sauerstoff zu Kohlendioxid verbinden, das dann zusammen mit nicht reagiertem Methan in die Atmosphäre aufsteigen kann. Allerdings laufen alle Prozesse in sehr großen Zeitdimensionen ab. Die Erwärmung der Atmosphäre wird nur sehr langsam in die unteren Wasserschichten und in die Sedimente weitergegeben. Auch das dort freigesetzte Methan braucht lange, bis es die Atmosphäre erreicht. Es kann durch Meeresströmungen verfrachtet oder schon in den oberen Sedimenten durch Bakterien oxidiert werden.

Geologische Daten aus Eisbohrkernen sprechen allerdings dafür, dass die Möglichkeit einer größeren Methanfreisetzung aus Hydraten nicht ausgeschlossen werden kann. Bereits in früheren Epochen der Erdgeschichte, in denen es zu einer plötzlichen Erwärmung kam, entwichen aus den Hydraten größere Mengen an Methan. Zu einer gewaltigen Methanfreisetzung dieser Art soll es vor etwa 55 Millionen Jahren im Paläozän/Eozän (zu Beginn des Känozoikums) gekommen sein. Die Folge war ein starker Temperaturanstieg in den höheren Breiten um 5-8 oC. Als Ursache für diese Methanfreisetzung werden sowohl eine Erwärmung des Ozeans um 4-6 oC als auch tektonisch verursachte Erdrutsche an den Kontinentalhängen diskutiert. Auch in den eiszeitlichen plötzlichen Erwärmungsphasen, den so genannten Dansgaard-Oeschger-Zyklen, soll es zur schnellen Freisetzung von Methan aus Gashydraten am Meeresboden gekommen sein. Auch hier spielte wohl eine Erwärmung des Meerwassers um 2-3,5 oC eine Rolle. Begünstigt wurde der Zerfall der Methanhydrate während der Kaltzeiten außerdem durch einen geringen Wasserdruck, da der Meeresspiegel gegenüber heute um ca. 80 m niedriger war.

Eine plötzliche Freisetzung von größeren Methanmengen aus Hydraten in absehbarer Zeit, d.h. in den nächsten 100 Jahren, erscheint wegen der großen Zeitdimensionen der beteiligten Prozesse als sehr unwahrscheinlich. Höhere Temperaturen und mehr Niederschläge in den nächsten 100 Jahren werden dagegen wahrscheinlich aus Hydraten und Feuchtgebieten so viel Methanemissionen entweichen lassen, wie gegenwärtig aus direkten anthropogenen Quellen emittiert wird. In den nächsten 1000 bis 1000 000 Jahren wird es allerdings durch die globale Erwärmung zu einer Methanfreisetzung aus Hydraten kommen, die diese Erwärmung signifikant verstärken dürfte.

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 2.3.2 und 7.4.1
  2. IPCC (2001): Climate Change 2001: The Scientific Basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge and New York 2001, Table 4.2
  3. Norris, R.D., U. Röhl (1999): Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition, Nature 401, 775 - 778; Katz, M.E., D.K. Pak, G.R. Dickens, and K.G. Miller (2000): The Source and Fate of Massive Carbon Input During the Latest Paleocene Thermal Maximum, Science 288, 128-133; Dickens, R. (1999): Carbon cycle: The blast in the past, Nature 401, 752-755; Schiermeier, Q. (2003): Gas leak!, Nature 423, 681-682; Schmidt, G.A., and D.T. Shindell (2003): Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates, Paleoceanography 18 (1), 1004, doi: 10.1029/2002PA000757
  4. Katz, M.E., B.S. Cramer, G.S. Mountain, S. Katz, and K.G. Miller (2001): Uncorking the bottle: What triggered the Paleocene-Eocene thermal maximum methane release? Paleoceanography 16 (6), 549-562
  5. Kennett, J.P., K.G. Cannariato, I.L. Hendy, and R.J. Behl (2000): Carbon Isotopic Evidence for Methane Hydrate Instability During Quaternary Interstadials, Science 288, 128-133
  6. Brook, E. J. , S.Harder, J. Severinghaus, E.J. Steig and C.M. Sucher (2000): On the origin and timing of rapid changes in atmospheric methane during the last glacial period, Global Biogeochem. Cycles 14 , 559-572
  7. IPCC (2001): Climate Change 2001: The Scientific Basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge and New York 2001, 4.2.1.1
  8. IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, Table 2.14

Siehe auch

Weblinks


Dieser Artikel basiert auf dem Artikel Methan vom Hamburger Bildungsserver und steht unter der GNU-Lizenz für freie Dokumentation.