Sekundäre Aerosole

Aus Klimawandel
Version vom 22. Mai 2013, 16:03 Uhr von Dieter Kasang (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Sekundäre Aerosole sind flüssige Partikel wie Schwefelsäure (H2SO4) oder Salpetersäure (HNO3), die durch chemische Reaktion aus gasförmigen Vorläuferstoffen wie Schwefeldioxid (SO2) oder Stickoxiden (NOx) gebildet werden. Entweder kommt es dabei zur direkten Nukleation, d.h. mehrere Spurengasmoleküle verbinden sich zu Teilchen, oder die Moleküle kondensieren an bereits vorhandenen Partikeln. Bei der Nukleation entstehen zunächst sehr kleine Partikel im Nano-Bereich, die aber schnell durch Zusammentreffen mit weiteren Aerosolpartikeln anwachsen können, ein Prozess, den man Koagulation nennt. Schwefelsäure-Aerosole werden wegen ihrer guten Löslichkeit leicht von Wolkentropfen aufgenommen und durchlaufen darin weitere chemische Reaktionen.

Sulfat-Aerosole

Die klimatisch bedeutsamsten sekundären Aerosole sind die Sulfat-Aerosole, die aus gasartigen natürlichen wie anthropogenen Vorläufern entstehen.

Nitrat-Aerosole

Auch aus Stickstoffverbindungen können sich Aerosole bilden. Ammoniak (NH3) verbindet sich mit Schwefelsäure zu Ammoniumsulfat oder, wenn die Schwefelsäurekonzentration gering ist, mit Salpetersäure zu Ammoniumnitrat. Salpetersäure bildet sich aus Stickoxiden durch chemische Umwandlung in der Atmosphäre. Die Bedeutung der Nitrat-Aerosole ist derzeit noch gering, kann jedoch im Laufe des 21. Jahrhunderts deutlich zunehmen, da sich die Ammoniak-Emissionen wahrscheinlich verdoppeln und auch die Stickoxid-Emissionen deutlich zunehmen werden. Außer Sulfat enthalten Aerosole in belasteten Gebieten im Akkumulationsmodus auch heute schon signifikante Mengen an Nitrat. So ist über manchen Regionen in Europa wie etwa über der niederländischen Küste Ammonium- und Nitrat für mehr Aerosolmasse verantwortlich als Ammonium-Sulfat. Die Reduktion der Schwefeldioxidemissionen wird daher geringere Auswirkungen auf die Aerosolbeladung der Atmosphäre haben.[1]

Die zumeist gröberen Primäraerosole werden hauptsächlich durch trockene Deposition aus der Atmosphäre entfernt. Eine wichtige Ausnahme sind die sehr feinen Rußpartikel. Aus den Vorläufergasen der Sekundäraerosole bilden sich durch Nukleation sehr feine Aerosole, die dann durch Koagulation und Kondensation weiter wachsen.

Organische Aerosole

Eine weitere Gruppe der erst in der Atmosphäre entstandenen Aerosole sind die sekundären organischen Aerosole (SOA). Vorläufer sind flüchtige organische Verbindungen (VOC - Volatile Organic Compounds), die direkt von Pflanzen emittiert werden oder bei der Verbrennung fossiler Energien entstehen. Die sekundären organischen Aerosole entstehen im wesentlichen aus den natürlichen bzw. biogenen VOCs, und zwar durch Oxidation mit O3, NO und OH, während die anthropogenen VOCs als Quelle für organische Aerosole vernachlässigbar sind. Die gesamte Menge der aus biogenen Vorläufern hervorgehenden organischen Aerosole wird auf 8-40 Mt/a geschätzt. Die Entstehung der organischen Aerosole wird allerdings zunehmend durch menschliche Aktivitäten, die für höhere Konzentrationen von O3 und NO2 verantwortlich sind, beeinflusst, so dass sich die biogene Aerosolproduktion seit vorindustriellen Zeiten verdrei- bis vervierfacht hat.

Einzelnachweise

  1. Vgl. auch IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 2.4.4.5.


Dieser Artikel ist ein Originalartikel des Klima-Wiki und steht unter der Creative Commons Lizenz Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland. Informationen zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können in den meisten Fällen durch Anklicken dieser Mediendateien abgerufen werden und sind andernfalls über Dieter Kasang zu erfragen. CC-by-sa.png
Kontakt: Dieter Kasang