Globales Förderband: Unterschied zwischen den Versionen

Aus Klimawandel
Keine Bearbeitungszusammenfassung
Zeile 36: Zeile 36:
{{CC-Lizenz}}
{{CC-Lizenz}}
[[Kategorie:Ozean]]
[[Kategorie:Ozean]]
[[Kategorie:Klimafolgen]]

Version vom 13. Mai 2008, 18:52 Uhr

Das "große marine Förderband"

Ursachen von Ozeanströmungen

Die Oberflächenströme des Ozeans sind größtenteils eine Folge der atmosphärischen Zirkulation, d.h. vor allem der Passat- und der Westwinde, und erfahren durch die Erdrotation eine charakteristische Ablenkung (Corioliskraft). Einige wichtige Ströme werden aber auch durch windbedingten Wasserstau an den Rändern der Kontinente angetrieben. Viele dieser Strömungen sind zusammen mit wichtigen Tiefenströmen Teil eines alle drei Ozeane umspannenden Strömungssystems, des "großen marinen Förderbands" (engl.: the great ocean conveyor belt), das sich vom Nordatlantik über das antarktische Zirkumpolarmeer und den Indischen Ozean bis in den nördlichen Pazifik und zurück erstreckt. Es wird nach seinen wichtigsten Antriebsfaktoren Temperatur und Salzgehalt auch als "thermohaline Zirkulation" (THC) bezeichnet, wird in Teilen aber auch durch den Wind angetrieben. Ein wichtiger Motor der THC ist das thermohalin bedingte Absinken von kaltem und salzreichem Wasser im Nordatlantik.

Nordatlantikstrom

Im Atlantik strömt warmes und aufgrund der hohen Verdunstung in den Subtropen salzreiches Oberflächenwasser über den Äquator und den Golf von Mexiko bis in das Gebiet zwischen Grönland, Island und Norwegen (auch als GIN-See bezeichnet) und in die Labradorsee. Diese als Golfstrom und in ihrem nordöstlichen Ausläufer als Nordatlantikstrom bekannte Meeresströmung transportiert bei 24oN die enorme Energiemenge von 1,3 Petawatt (1 PW = 109 Megawatt = 1015 Watt) und bei 48oN noch 0,6 PW in den Nordatlantikraum, wo sie zu einem großen Teil an die Atmosphäre abgegeben wird, das regionale Klima um bis zu 10 oC erwärmt und in Folge der vorherrschenden Westwinde für das außerordentlich milde Klima in nordöstlichen Nordwesteuropa sorgt. Die Abkühlung des Oberflächenwassers in der GIN- und Labrador-See und der mitgebrachte hohe Salzgehalt, der durch die Bildung von Meereis noch weiter erhöht wird, verleihen den Wassermassen eine so hohe Dichte, dass sie in gewaltigen Mengen bis in Tiefen von zwei bis drei Kilometern absinken. Diese Absinkvorgänge wirken wie ein Sog und ziehen immer wieder neue warme und salzreiche Wassermassen aus der Karibik nach Norden. In der Tiefe strömen sie dann als nordatlantisches Tiefenwasser (NADW) in einer Größenordnung nach Süden zurück, die etwa 20 Mal so hoch wie der Abfluss aller Flüsse der Erde und um einiges größer als die gesamte globale Niederschlagsmenge ist. Der größte Teil davon gelangt in den antarktischen Zirkumpolarstrom, der sie dann an den Indischen und Pazifischen Ozean verteilt. Hier strömen sie in der Tiefe nach Norden, steigen in die oberen Wasserschichten auf und strömen um die Südspitze von Afrika und Südamerika wieder in den Atlantik zurück.

Antrieb des globalen Förderbandes

Die eigentliche Ursache dieser weltumspannenden Zirkulation liegt in dem höheren Salzgehalt und damit der höheren Dichte des Atlantiks gegenüber den anderen Ozeanen. Im Durchschnitt liegt der Salzgehalt des Atlantiks um 1 psu (practical salinity unit, entspricht etwa einem Promille) über dem des Pazifiks, im Nordatlantik sogar um 2-3 psu über dem des Nordpazifiks. Zwar ist auch gerade im tropischen Atlantik der Salzgehalt sehr hoch, da dort viel Verdunstung stattfindet und zudem eine Zufuhr sehr salzhaltigen Wassers aus dem Mittelmeer erfolgt. Allerdings übt der Salzgehalt erst bei niedrigen Temperaturen, wie sie in höheren Breiten herrschen, einen dominierenden Einfluss auf die Dichte des Meerwassers aus. Nur das Zusammenspiel von Temperatur und Salzgehalt und deren Unterschiede bewirken also die nötigen Dichteunterschiede zum Antrieb der globalen Umwälzbewegung. Die Wassermassen, die in begrenzten Regionen im nördlichen Atlantik und auch im Weddellmeer (einem Teil des Südpolarmeers) in die Tiefe sinken, finden keine Entsprechung in Regionen mit rasch aufsteigendem Wasser. Vielmehr gelangt das Wasser an nahezu allen anderen Stellen des Weltozeans durch langsame Diffusionsprozesse wieder an die Oberfläche. Ohne diese Beschränkung würde die Umwälzbewegung sehr viel schneller stattfinden.

Grob gesehen strömt also das dichtere Atlantikwasser in der Tiefe in die beiden anderen Ozeane ein und leichteres Oberflächenwasser in den Atlantik zurück. Wie aber wird trotz dieser Ausgleichsströmung der Dichteunterschied und damit die thermohaline Zirkulation zwischen den Ozeanen aufrechterhalten? Die thermohaline Zirkulation hat nicht nur einen entscheidenden Einfluss auf die Atmosphäre und das Klima der Erde, wie der folgende Abschnitt noch näher zeigen wird, sie ist selbst wiederum durch die atmosphärische Dynamik bestimmt. Denn die Ursache für den höheren Salzgehalt des Atlantiks liegt in dem hohen Wasserdampfexport aus der Atlantikregion durch die Passatwinde über die schmale mittelamerikanische Landbrücke in den pazifischen Raum, für den der Atlantik weder in der Passatzone vom Indischen Ozean (wegen der Breite des afrikanischen Kontinents) noch in der Westwindzone vom Pazifik her (wegen des nordamerikanischen Kontinents mit den Rocky Mountains) einen Ausgleich erhält. Die in den Subtropen aus dem Atlantikwasser verdunsteten und Richtung Pazifik exportierten Wasserdampfmassen sind so groß, dass der Atlantik ständig mehr Frischwasser an die anderen Ozeane abgibt, als er von ihnen zurückerhält. Dieser Wasserdampfexport hält den Dichteunterschied und damit die thermohaline Zirkulation aufrecht.

Globale Erwärmung und globales Förderband

Der anthropogene Klimawandels hat in jüngster Zeit die Frage aufgeworfen, ob diese Zirkulation stabil ist. Die globale Erwärmung durch die Emission von Kohlendioxid und anderen Treibhausgasen verstärkt die Verdunstung, besonders in den Subtropen. Die wärmere und mehr Wasserdampf enthaltende Luft transportiert diesen von den Subtropen in höhere Breiten, wo er dann als Niederschlag fällt und direkt oder durch Zuflüsse den Süßwassereintrag in den Nordatlantik erhöht. Außerdem wird durch die Erwärmung der Atmosphäre auch die Temperatur des Oberflächenwassers erhöht. Zusätzlich bedeutet das Abschmelzen großer Eismassen einen Eintrag von Süßwasser im Nordatlantik. All diese Effekte haben eine Verringerung der Dichte in den nordatlantischen Absinkgebieten der thermohalinen Zirkulation zur Folge und damit eine Schwächung der Tiefenwasserproduktion und des Wärmetransports durch den Golfstrom - falls nicht andere Effekte dem entgegenwirken. Wie die THC auf eine erhöhte Süßwasserzufuhr und höhere Temperaturen reagieren wird, kann man einerseits durch Modellrechnungen abschätzen, andererseits aus der Vergangenheit abzuleiten versuchen. Geologische Daten haben in Verbindung mit Modellsimulationen in letzter Zeit ein zunehmend differenzierteres Bild über das Verhalten der thermohalinen Zirkulation bei früheren Klimaänderungen, insbesondere während der letzten Kaltzeit, entstehen lassen.

Der Blick auf die THC im Eiszeitalter liefert so wertvolle Erkenntnisse für die Frage nach dem Verhalten dieses für Europa entscheidenden Klimafaktors auch in einer wärmeren Welt. Er zeigt erstens, dass es nicht nur einen Modus (Zustand) der thermohalinen Zirkulation im Nordatlantik geben muss, und zweitens, dass der jetzige Modus sehr empfindlich auf eine erhöhte Frischwasserzufuhr reagieren kann.

Datei:MOC Zukunft.gif
Modellrechnungen verschiedener Forschungsinstitute zur Entwicklung der thermohalinen Zirkulation zwischen 1860 und 2100. Bis 1990 liegen die Ergebnisse nahe beieinander, im 21. Jahrhundert driften sie relativ weit auseinander[1].

Da bei einer globalen Erwärmung sowohl der Wasserkreislauflauf und die Niederschläge vor allem in den höheren Breiten verstärkt werden wie auch das Schmelzen von Eis (von Meereis und Grönlandeis) begünstigt wird, wird die Frischwasserzufuhr in den Nordatlantik aller Wahrscheinlichkeit nach erhöht und damit die Dichte des Oberflächenwasers in den Absinkgebieten der THC verringert. Auch die Erwärmung des Oberflächenwassers infolge des Treibhauseffektes trägt zur Verringerung der Dichte bei. Entsprechend haben die meisten Klimamodelle für das 21. Jahrhundert eine deutliche Schwächung der THC zwischen 20-50% berechnet und schließen ein komplettes Versiegen bei einem Temperaturanstieg von 4-5 °C in 100 Jahren nicht aus[2]. Die meisten Modelle stimmen allerdings darin überein, dass eine Schwächung der THC in den betroffenen Regionen nicht zu einer Abkühlung unter die vorindustriellen Werte führen wird, d.h. dass die Erwärmung etwa in Westeuropa lediglich schwächer ausfallen wird als ohne eine Veränderung der THC. Andere Folgen betreffen eine erhöhte Rate des Meerespiegelanstiegs und die reduzierte Fähigkeit des Ozeans zur CO2-Aufnahme[3]. Für die Gegenwart zeigen zwar weder Modelle noch Beobachtungen eine Veränderung der THC durch den Klimawandel. Jüngste Beobachtungen einer Erhöhung der Frischwasserzufuhr durch die Sibirischen Flüsse in das Norpolaarmeer stützen jedoch die erwähnten Prognosen für das 21. Jahrhundert[4]. Es gibt aber auch gegenteilige Berechnungen, die eine Stabilisierung der THC prognostizieren, zum einen durch eine höhere Verdunstung, zum anderen durch den Einfluss der zu erwartenden Trends der Nordatlantischen Oszillation (NAO) und des El Niño-Effekts[5].

Einzelnachweise

  1. IPCC (2001): Climate Change 2001: The Scientific Basis. Contribution of the WorkinGroup I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T. et al., eds), Cambridge and New York, Figure 9.21
  2. Rahmstorf, S. (2000): The Thermohaline Circulation: a System with Dangerous Thresholds? An Editorial Comment, Climatic Change 46, 247-25; IPCC (2001): Climate Change 2001: The Scientific Basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T. et al., eds), Cambridge and New York, 9.3.4.3; Knutti, R. and T.F. Stocker (2002): Limited Predictability of the Future Thermohaline Circulation Close to an Instability Threshold, Journal of Climate 15, 179-186
  3. Rahmstorf, S. (2000): The Thermohaline Circulation: a System with Dangerous Thresholds? An Editorial Comment, Climatic Change 46, 247-256; Knutti, R. and T.F. Stocker 2000): Influence of the Thermohaline Circulation on Projected Sea Level Rise, Journal of Climate 13, 1997-2001; Joos, F., G.K. Plattner, T.F. Stocker, O. Marchal and A. Schmittner (1999): Global Warming and Marine Carbon Cycle Feedbacks on Future Atmospheric CO2, Science 284, 264-267
  4. Peterson, B.J., R.M. Holmes, J.W. McClelland, C.J. Vörösmarty, R.B.Lammers, A.I. Shiklomanov, I.A. Shiklomanov and Stefan Rahmstorf(2002): Increasing River Discharge to the Arctic Ocean, Science 298, 2171-2173
  5. vgl. Knutti, R. and T.F. Stocker (2002): Limited Predictability of the Future Thermohaline Circulation Close to an Instability Threshold, Journal of Climate 15, 179-186

Unterricht

  • Vergleichen Sie die Wintertemperaturen in Norddeutschland, Irland und Norwegen (Bergen) mit Gebieten auf der selben geographischen Breite an der West- und Ostküste Nordamerikas und erklären Sie den Unterschied.

Weblinks


Dieser Artikel ist ein Originalartikel des Klima-Wiki und steht unter der Creative Commons Lizenz Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland. Informationen zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können in den meisten Fällen durch Anklicken dieser Mediendateien abgerufen werden und sind andernfalls über Dieter Kasang zu erfragen.