Erwärmung des Ozeans: Unterschied zwischen den Versionen

Aus Klimawandel
KKeine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Zeile 3: Zeile 3:


== Meeresoberflächentemperaturen ==
== Meeresoberflächentemperaturen ==
Die Meeresoberflächentemperatur ist durch zwei Faktoren bestimmt:  
Die Meeresoberflächentemperatur (auch SST genannt nach engl. Sea Surface Temprature) ist die Wassertemperatur der oberen Ozeanschicht. Die Tiefe der Schicht ist nicht genau definiert und beträgt zwischen einigen cm bis einigen m. Die Meeresoberflächentemperatur ist vor allem durch zwei Faktoren bestimmt:  
# die [[Lufttemperatur|Temperatur]] der [[Atmosphäre im Klimasystem|Atmosphäre]] und  
# die [[Lufttemperatur|Temperatur]] der [[Atmosphäre im Klimasystem|Atmosphäre]] und  
# die [[Meeresströmungen]].  
# die [[Meeresströmungen]].  
Zeile 14: Zeile 14:
Die [[Lufttemperatur|Temperatur]] in den letzten 100 Jahren ist stärker über dem Land, insbesondere über den großen Kontinentalmassen, als in der oberen Schicht des Meeres angestiegen. So sind die Meeresoberflächentemperaturen im letzten Drittel des 20. Jahrhunderts nur etwa halb so stark gestiegen wie die Landtemperaturen. Einzelne Ozeangebiete zeigen sogar eine Abkühlung.
Die [[Lufttemperatur|Temperatur]] in den letzten 100 Jahren ist stärker über dem Land, insbesondere über den großen Kontinentalmassen, als in der oberen Schicht des Meeres angestiegen. So sind die Meeresoberflächentemperaturen im letzten Drittel des 20. Jahrhunderts nur etwa halb so stark gestiegen wie die Landtemperaturen. Einzelne Ozeangebiete zeigen sogar eine Abkühlung.


Die Meeresoberflächentemperaturen (SST nach engl. Sea Surface Temprature) stehen in unmittelbarem Kontakt mit der Atmosphäre, weshalb sich deren Temperaturänderungen ähnlich auch bei den Temperaturen der Meeresoberfläche<ref>Ältere von Schiffen und Bojen gemessene Daten beziehen sich auf die oberen Meter des Wasserkörpers, Satellitendaten seit 1979 auf dessen „Haut“.</ref>  bemerkbar machen. Ähnlich wie bei den Temperaturen der Atmosphäre zeigt sich bei den Meeresoberflächentemperaturen ein deutlicher Anstieg vom Beginn des 20. Jahrhunderts bis ca. 1940, dann eine leichte Abnahme und seit den 1970er Jahren wieder ein sehr deutlicher Anstieg. Neben der atmosphärischen Temperatur spielen aber auch Schwankungen der Ozeanzirkulation eine wichtige rolle für die Meeresoberflächentemperatur. Daher entwickeln sich die Temperaturen in den einzelnen Ozeanen durchaus abweichend. Im Pazifik spielt das [[ENSO]]-Phänomen eine wichtige Rolle, im Atlantik die [[Thermohaline Zirkulation|thermohaline Zirkulation]].
Die Meeresoberflächentemperaturen stehen in unmittelbarem Kontakt mit der Atmosphäre, weshalb sich deren Temperaturänderungen ähnlich auch bei den Temperaturen der Meeresoberfläche<ref>Ältere von Schiffen und Bojen gemessene Daten beziehen sich auf die oberen Meter des Wasserkörpers, Satellitendaten seit 1979 auf dessen „Haut“.</ref>  bemerkbar machen. Ähnlich wie bei den Temperaturen der Atmosphäre zeigt sich bei den Meeresoberflächentemperaturen ein deutlicher Anstieg vom Beginn des 20. Jahrhunderts bis ca. 1940, dann eine leichte Abnahme und seit den 1970er Jahren wieder ein sehr deutlicher Anstieg. Neben der atmosphärischen Temperatur spielen aber auch Schwankungen der Ozeanzirkulation eine wichtige Rolle für die Meeresoberflächentemperatur. Daher entwickeln sich die Temperaturen in den einzelnen Ozeanen durchaus abweichend. Im Pazifik besitzt das [[ENSO]]-Phänomen einen wichtigen Einfluss, im Atlantik die [[Thermohaline Zirkulation|thermohaline Zirkulation]].


Auf längeren Zeitskalen gibt es großräumige Abkühlungs- und Erwärmungsphasen bei den Meeresoberflächentemperaturen im Nordatlantik durch die [[Natürliche_Klimaschwankungen|Atlantische Multidekadische Oszillation (AMO)]], die zumindest teilweise von der thermohalinen Zirkulation bzw. [[Meridionale Umwälzzirkulation (MOC)|Meridionalen Umwälzzirkulation (MOC)]] angetrieben wird. Der Nordatlantik hat sich seit den 1970er Jahren stark erwärmt, aber seit Beginn des neuen Jahrhunderts sind die Temperaturen nahezu konstant geblieben.<ref name="MetOffice 2013b">MetOffice (2013): [http://www.metoffice.gov.uk/research/news/recent-pause-in-warming The recent pause in global warming (2): What are the potential causes?]</ref>
Auf längeren Zeitskalen gibt es großräumige Abkühlungs- und Erwärmungsphasen bei den Meeresoberflächentemperaturen im Nordatlantik durch die [[Natürliche_Klimaschwankungen|Atlantische Multidekadische Oszillation (AMO)]], die zumindest teilweise von der thermohalinen Zirkulation bzw. [[Meridionale Umwälzzirkulation (MOC)|Meridionalen Umwälzzirkulation (MOC)]] angetrieben wird. Der Nordatlantik hat sich seit den 1970er Jahren stark erwärmt, aber seit Beginn des neuen Jahrhunderts sind die Temperaturen nahezu konstant geblieben.<ref name="MetOffice 2013b">MetOffice (2013): [http://www.metoffice.gov.uk/research/news/recent-pause-in-warming The recent pause in global warming (2): What are the potential causes?]</ref>
Zeile 24: Zeile 24:
Zwischen 1971 und 2010 hat die Erde durch den Anstieg der Treibhausgaskonzentration eine Energiemenge von 274 ZJ (1 Zettajoule= 10<sup>21</sup> Joule ) gewonnen. 93 % dieser Energiemenge ist im Mittel über den Zeitraum 1971-2010 in den Ozean gegangen.  Der obere Ozean (0-700 m) hat 64 %, der tiefere (700-2000) 29 % aufgenommen. 3 % sind in das Schmelzen von Eis eingegangen, ebenfalls 3 % durch die Erwärmung der Landoberfläche der Kontinente und 1 % durch die Erwärmung der Atmosphäre.<ref name="IPCC 2013 Box 3.1" />
Zwischen 1971 und 2010 hat die Erde durch den Anstieg der Treibhausgaskonzentration eine Energiemenge von 274 ZJ (1 Zettajoule= 10<sup>21</sup> Joule ) gewonnen. 93 % dieser Energiemenge ist im Mittel über den Zeitraum 1971-2010 in den Ozean gegangen.  Der obere Ozean (0-700 m) hat 64 %, der tiefere (700-2000) 29 % aufgenommen. 3 % sind in das Schmelzen von Eis eingegangen, ebenfalls 3 % durch die Erwärmung der Landoberfläche der Kontinente und 1 % durch die Erwärmung der Atmosphäre.<ref name="IPCC 2013 Box 3.1" />


Die Erhöhung der Meeresoberflächentemperatur wird auch an die tieferen Schichten der Wassersäule weitergegeben. Ein Vergleich moderner Daten mit der Messkampagne der HMS Challenger im Zeitraum 1872-1876 über die letzten 135 Jahre zeigt eine mittlere Erwärmung von 0,33 °C in den oberen 700 Metern Wasserkörper.<ref name="Roemmich 2012" /> Auch seit den 1950er Jahren zeigt die Erwärmung des tieferen Ozeans einen deutlichen Trend, der im Wesentlichen auf die Zunahme von Treibhausgasen in der Atmosphäre zurückgeführt werden kann, also anthropogen bedingt ist.<ref>Hegerl, G.C., Bindoff, N.L. (2005): Warming of the World's Oceans, Science 309, 254-255</ref>  Es spielen offensichtlich aber auch natürliche Ursachen eine Rolle, wie die Schwankung von Jahrzehnt zu Jahrzehnt zeigt, die wahrscheinlich mit dynamischen Prozessen des Ozeans zusammenhängt. So hat es eine deutliche Erwärmung von 1969 bis 1980 gegeben, danach eine Abkühlung bis 1985, auf die wieder eine Erwärmung bis zu Beginn des neuen Jahrhunderts folgte.  
Die Erhöhung der Meeresoberflächentemperatur wird auch an die tieferen Schichten der Wassersäule weitergegeben. Ein Vergleich moderner Daten mit der Messkampagne der HMS Challenger im Zeitraum 1872-1876 über die letzten 135 Jahre zeigt eine mittlere Erwärmung von 0,33 °C in den oberen 700 Metern Wasserkörper.<ref name="Roemmich 2012" /> Auch seit den 1950er Jahren zeigt die Erwärmung des tieferen Ozeans einen deutlichen Trend, der im Wesentlichen auf die Zunahme von Treibhausgasen in der Atmosphäre zurückgeführt werden kann, also anthropogen bedingt ist.<ref>Hegerl, G.C., Bindoff, N.L. (2005): Warming of the World's Oceans, Science 309, 254-255</ref>  Es spielen offensichtlich aber auch natürliche Ursachen eine Rolle, wie die Schwankung von Jahrzehnt zu Jahrzehnt zeigt, die wahrscheinlich mit dynamischen Prozessen des Ozeans zusammenhängt. So hat es eine deutliche Erwärmung von 1969 bis 1980 gegeben, danach eine Abkühlung bis 1985, auf die wieder eine Erwärmung bis zu Beginn des neuen Jahrhunderts folgte.


Der IPCC-Bericht von 2007 gibt für die oberen 700 m eine mittlere Zunahme der Wärmekapazität von 1953 bis 2003 von 10,9x10<sup>22</sup> Joule an. <ref>IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 5.2.2</ref> Die Daten, auf denen solche Schätzungen beruhen, sind jedoch weder räumlich noch zeitlich konsistent, und so kommen neuere Untersuchungen auf einen deutlich höheren Wert von 16x10<sup>22</sup> Joule. <ref>Domingues, C.M, Church, J.A:, White, N.J., Gleckler, P.J, Wijffels, S.E., Barker, P.M. and J.R.Dunn (2008): Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090-1094</ref> Außerdem ist die Erwärmung regional verschieden über die Ozeane verteilt. So hat die Hälfte der Erwärmung von 1955 bis 2003 im Atlantischen Ozean stattgefunden, während für das Jahrzehnt 1993-2003 der Pazifik den größten Anteil hatte. Der Atlantik zeigt außerdem aufgrund seiner ausgeprägten Tiefenkonvektion Erwärmungen bis in 1000 m Tiefe, während die Temperaturzunahme der anderen Ozeane auf die oberen 100 m beschränkt blieb.<ref>Barnett, T.P., D.W. Pierce, K.M. AchutaRao, P.J. Gleckler, B.D. Santer, J.M. Gregory, and W.M. Washington (2005): Penetration of human-induced warming into the world's oceans. Science 309, 284-287</ref> Auch die Daten über den größeren Zeitraum zwischen Ende des 19. und Anfang des 21. Jahrhunderts zeigen eine deutlich stärkere Erwärmung des Atlantiks in den oberen 700 m Wasserschicht, in der der Atlantik sich um 0,58 °C, der Pazifik sich dagegen nur um 0,22 °C erwärmt hat.<ref name="Roemmich 2012" />
Der IPCC-Bericht von 2007 gibt für die oberen 700 m eine mittlere Zunahme der Wärmekapazität von 1953 bis 2003 von 10,9x10<sup>22</sup> Joule an. <ref>IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 5.2.2</ref> Die Daten, auf denen solche Schätzungen beruhen, sind jedoch weder räumlich noch zeitlich konsistent, und so kommen neuere Untersuchungen auf einen deutlich höheren Wert von 16x10<sup>22</sup> Joule. <ref>Domingues, C.M, Church, J.A:, White, N.J., Gleckler, P.J, Wijffels, S.E., Barker, P.M. and J.R.Dunn (2008): Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090-1094</ref> Außerdem ist die Erwärmung regional verschieden über die Ozeane verteilt. So hat die Hälfte der Erwärmung von 1955 bis 2003 im Atlantischen Ozean stattgefunden, während für das Jahrzehnt 1993-2003 der Pazifik den größten Anteil hatte. Der Atlantik zeigt außerdem aufgrund seiner ausgeprägten Tiefenkonvektion Erwärmungen bis in 1000 m Tiefe, während die Temperaturzunahme der anderen Ozeane auf die oberen 100 m beschränkt blieb.<ref>Barnett, T.P., D.W. Pierce, K.M. AchutaRao, P.J. Gleckler, B.D. Santer, J.M. Gregory, and W.M. Washington (2005): Penetration of human-induced warming into the world's oceans. Science 309, 284-287</ref> Auch die Daten über den größeren Zeitraum zwischen Ende des 19. und Anfang des 21. Jahrhunderts zeigen eine deutlich stärkere Erwärmung des Atlantiks in den oberen 700 m Wasserschicht, in der der Atlantik sich um 0,58 °C, der Pazifik sich dagegen nur um 0,22 °C erwärmt hat.<ref name="Roemmich 2012" />

Version vom 21. Juni 2015, 17:22 Uhr

Meeresoberflächentemperatur im Mai 2008 in °C

Die Zunahme der Treibhausgaskonzentration hat die im Erdsystem gespeicherte Wärme erhöht. Gewöhnlich wird das an der Erwärmung der Atmosphäre abgelesen. Aber der allergrößte Teil der zusätzlichen Enrgie, die zwischen 1971 und 2010 das Erdsystem erwärmt hat, nämlich ca. 93 %, geht in den Ozean.[1] Der Ozean ist durch seine großes Volumen und seine hohe Wärmekapazitätmit mit Abstand das größte Wärme-Reservoir im Klimasystem. Die Wärmeaufnahme durch den Ozean stellt daher einen Puffer bei Klimaänderungen dar und verlangsamt im gegenwärtigen Klimawandel deutlich die Erwärmungsrate der Atmosphäre.[2]

Meeresoberflächentemperaturen

Die Meeresoberflächentemperatur (auch SST genannt nach engl. Sea Surface Temprature) ist die Wassertemperatur der oberen Ozeanschicht. Die Tiefe der Schicht ist nicht genau definiert und beträgt zwischen einigen cm bis einigen m. Die Meeresoberflächentemperatur ist vor allem durch zwei Faktoren bestimmt:

  1. die Temperatur der Atmosphäre und
  2. die Meeresströmungen.

Entsprechend sieht man einerseits eine deutliche Temperaturabnahme vom Äquator zu den höheren Breiten und zweitens charakteristische Abweichungen von diesem Muster in bestimmten Regionen, die durch kalte bzw. warme Meeresströmungen geprägt sind. Auffällig sind in dieser Hinsicht zum einen die relativ kalten Temperaturen vor der Küste von Peru. Sie sind durch den kühlen Humboldt-Strom verursacht, der aus höheren südlichen Breiten kaltes Wasser Richtung Äquator transportiert. Hinzu kommt, dass der Humboldt-Strom vor der Peruanischen Küste durch die Corioliskraft nach Westen abdriftet und damit kaltes Auftriebswasser erzeugt. Bei dem ENSO-Phänomen, d.h. dem Wechsel zwischen La Niña und El Niño, spielt dieses kalte Wasser eine wichtige Rolle. Ähnlich wirken sich der Benguela-Strom vor der Westküste Südafrikas und der Kuroshio vor der Ostküste Japans aus (allerdings ohne ENSO). Zweitens fällt auf, dass das Oberflächenwasser des Atlantiks vor der europäischen Nordwestküste bis weit nach Norden relativ warm ist. Dafür sind der Golfstrom und seine Fortsetzung, der Nordatlantik-Strom, verantwortlich, die relativ warmes Wasser aus dem Golf von Mexiko bis vor die Küsten Norwegens transportieren.

Die Frage nach dem Einfluss der globalen Erwärmung auf die Meeresoberflächen-Temperatur muss daher in zwei Fragen aufgeteilt werden:

  1. Wie beeinflusst die wärmere Atmosphäre das Meerwasser?
  2. Wie beeinflusst die wärmere Atmosphäre die Meeresströmungen?

Die Temperatur in den letzten 100 Jahren ist stärker über dem Land, insbesondere über den großen Kontinentalmassen, als in der oberen Schicht des Meeres angestiegen. So sind die Meeresoberflächentemperaturen im letzten Drittel des 20. Jahrhunderts nur etwa halb so stark gestiegen wie die Landtemperaturen. Einzelne Ozeangebiete zeigen sogar eine Abkühlung.

Die Meeresoberflächentemperaturen stehen in unmittelbarem Kontakt mit der Atmosphäre, weshalb sich deren Temperaturänderungen ähnlich auch bei den Temperaturen der Meeresoberfläche[3] bemerkbar machen. Ähnlich wie bei den Temperaturen der Atmosphäre zeigt sich bei den Meeresoberflächentemperaturen ein deutlicher Anstieg vom Beginn des 20. Jahrhunderts bis ca. 1940, dann eine leichte Abnahme und seit den 1970er Jahren wieder ein sehr deutlicher Anstieg. Neben der atmosphärischen Temperatur spielen aber auch Schwankungen der Ozeanzirkulation eine wichtige Rolle für die Meeresoberflächentemperatur. Daher entwickeln sich die Temperaturen in den einzelnen Ozeanen durchaus abweichend. Im Pazifik besitzt das ENSO-Phänomen einen wichtigen Einfluss, im Atlantik die thermohaline Zirkulation.

Auf längeren Zeitskalen gibt es großräumige Abkühlungs- und Erwärmungsphasen bei den Meeresoberflächentemperaturen im Nordatlantik durch die Atlantische Multidekadische Oszillation (AMO), die zumindest teilweise von der thermohalinen Zirkulation bzw. Meridionalen Umwälzzirkulation (MOC) angetrieben wird. Der Nordatlantik hat sich seit den 1970er Jahren stark erwärmt, aber seit Beginn des neuen Jahrhunderts sind die Temperaturen nahezu konstant geblieben.[4]

Temperatur-Index der Pazifischen Dekaden Oszillation, gemittelt über die Monate Mai bis September

Ähnliche Temperaturschwankungen wie im Nordatlantik gibt es auch bei der Meeresoberflächentemperatur im Pazifik. Eine Ursache ist die erwähnte El-Niño-Southern-Oscillation (ENSO). So war z.B. 1998 deshalb ein außergewöhnlich warmes Jahr, weil der stärkste je gemessenen El Niño die Temperaturen weltweit nach oben getrieben hat. Bei einem El Niño wird durch Umverteilung von Wassermassen im Pazifik kaltes Auftriebswasser im östlichen tropischen Pazifik unterdrückt und durch warmes Wasser aus dem westlichen Pazifik ersetzt. Bei einer La-Niña-Phase ist es umgekehrt: Kaltes Auftriebswasser gelangt vor der südamerikanischen Westküste vermehrt an die Oberfläche und breitet sich nach Westen aus. Seit dem Jahr 2000 gab es kein größeres El-Niño-Ereignis; vielmehr dominierten im tropischen Pazifik die kühlen La-Niña-Zustände. Außerdem spielt im Pazifik eine Schwankung eine Rolle, die als Pazifische Multidekaden Oszillation (PDO) bezeichnet wird. Die Mechanismen sind noch wenig verstanden. Seit den späten 1970er Jahren zeigt der PDO-Index einen positiven Trend, der sich seit der Jahrhundertwende dann aber negativ entwickelt hat. Zusammen mit den vorherrschenden La-Niña-Zuständen könnte die PDO durchaus nennenswert zu den kühleren Meeresoberflächentemperaturen seit ca. 2000 beigetragen haben.[4]

Der tiefere Ozean

Speicherung der zusätzlichen Energie durch die globale Erwärmung 1971-2010; gestrichelte Linie: Unsicherheitsbereich bei der Abschätzung der Erwärmung des Ozeans

Zwischen 1971 und 2010 hat die Erde durch den Anstieg der Treibhausgaskonzentration eine Energiemenge von 274 ZJ (1 Zettajoule= 1021 Joule ) gewonnen. 93 % dieser Energiemenge ist im Mittel über den Zeitraum 1971-2010 in den Ozean gegangen. Der obere Ozean (0-700 m) hat 64 %, der tiefere (700-2000) 29 % aufgenommen. 3 % sind in das Schmelzen von Eis eingegangen, ebenfalls 3 % durch die Erwärmung der Landoberfläche der Kontinente und 1 % durch die Erwärmung der Atmosphäre.[1]

Die Erhöhung der Meeresoberflächentemperatur wird auch an die tieferen Schichten der Wassersäule weitergegeben. Ein Vergleich moderner Daten mit der Messkampagne der HMS Challenger im Zeitraum 1872-1876 über die letzten 135 Jahre zeigt eine mittlere Erwärmung von 0,33 °C in den oberen 700 Metern Wasserkörper.[2] Auch seit den 1950er Jahren zeigt die Erwärmung des tieferen Ozeans einen deutlichen Trend, der im Wesentlichen auf die Zunahme von Treibhausgasen in der Atmosphäre zurückgeführt werden kann, also anthropogen bedingt ist.[5] Es spielen offensichtlich aber auch natürliche Ursachen eine Rolle, wie die Schwankung von Jahrzehnt zu Jahrzehnt zeigt, die wahrscheinlich mit dynamischen Prozessen des Ozeans zusammenhängt. So hat es eine deutliche Erwärmung von 1969 bis 1980 gegeben, danach eine Abkühlung bis 1985, auf die wieder eine Erwärmung bis zu Beginn des neuen Jahrhunderts folgte.

Der IPCC-Bericht von 2007 gibt für die oberen 700 m eine mittlere Zunahme der Wärmekapazität von 1953 bis 2003 von 10,9x1022 Joule an. [6] Die Daten, auf denen solche Schätzungen beruhen, sind jedoch weder räumlich noch zeitlich konsistent, und so kommen neuere Untersuchungen auf einen deutlich höheren Wert von 16x1022 Joule. [7] Außerdem ist die Erwärmung regional verschieden über die Ozeane verteilt. So hat die Hälfte der Erwärmung von 1955 bis 2003 im Atlantischen Ozean stattgefunden, während für das Jahrzehnt 1993-2003 der Pazifik den größten Anteil hatte. Der Atlantik zeigt außerdem aufgrund seiner ausgeprägten Tiefenkonvektion Erwärmungen bis in 1000 m Tiefe, während die Temperaturzunahme der anderen Ozeane auf die oberen 100 m beschränkt blieb.[8] Auch die Daten über den größeren Zeitraum zwischen Ende des 19. und Anfang des 21. Jahrhunderts zeigen eine deutlich stärkere Erwärmung des Atlantiks in den oberen 700 m Wasserschicht, in der der Atlantik sich um 0,58 °C, der Pazifik sich dagegen nur um 0,22 °C erwärmt hat.[2]

Ozeanerwärmung in den oberen 700 m für die Zeit 1955 bis März 2015

Die hohe Wärmekapazität des Ozeans verzögert die Weitergabe einer Erwärmung des Oberflächenwassers in tiefere Schichten. 60 % der Erwärmung des Ozeans in der 2. Hälfte des 20. Jahrhunderts fanden daher in den oberen 700 m statt. Der Wärmegehalt der oberen 3000 m hat sich in dieser Zeit um 14,5x1022 Joule erhöht, was einer durchschnittlichen Temperaturerhöhung um 0,037 °C entspricht. Das erscheint gering gegenüber der atmosphärischen Temperaturzunahme um ca. 0,4 °C in Bodennähe. Dabei ist jedoch zu sehen, dass eine Erwärmung des gesamten Ozeans um 0,1 °C einer Erwärmung der Atmosphäre um 100 °C entsprechen würde, falls die Wärme unmittelbar vom Ozean in die Atmosphäre überführt werden würde. Der erstaunliche Faktor 1000 kommt dadurch zustande, dass die Gesamtmasse des Ozeans die der Atmosphäre um mehr als das 250fache übertrifft und die Wärmekapazität des Meerwassers vier Mal so groß ist wie die der Luft. So hat denn auch der Ozean über 90 % der Erwärmung des Klimasystems seit der Mitte des 20. Jahrhunderts aufgenommen.[9]

Seit der Jahrhundertwende scheint sich der tiefere Ozean allerdings stärker erwärmt zu haben als die oberen Schichten. Die schwierige Auswertung von Beobachtungen legt den Schluss nahe, dass gerade die Temperatur zwischen 700 und 2000 m stärker steigen, während die Erwärmung in den oberen Schichten eher stagniert. Eine mögliche Ursache könnten Änderungen der Passatwinde und deren Wirkung auf großräumige Ozeanwirbel sein.[10]

Einzelnachweise

  1. 1,0 1,1 IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, Box 3.1
  2. 2,0 2,1 2,2 Roemmich, D., W.J. Gould and J. Gilson (2012): 135 years of global ocean warming between the Challenger expedition an the Argo Programme, Nature Climate Change 2, 425–428, DOI: 10.1038/NCLIMATE1461
  3. Ältere von Schiffen und Bojen gemessene Daten beziehen sich auf die oberen Meter des Wasserkörpers, Satellitendaten seit 1979 auf dessen „Haut“.
  4. 4,0 4,1 MetOffice (2013): The recent pause in global warming (2): What are the potential causes?
  5. Hegerl, G.C., Bindoff, N.L. (2005): Warming of the World's Oceans, Science 309, 254-255
  6. IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 5.2.2
  7. Domingues, C.M, Church, J.A:, White, N.J., Gleckler, P.J, Wijffels, S.E., Barker, P.M. and J.R.Dunn (2008): Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090-1094
  8. Barnett, T.P., D.W. Pierce, K.M. AchutaRao, P.J. Gleckler, B.D. Santer, J.M. Gregory, and W.M. Washington (2005): Penetration of human-induced warming into the world's oceans. Science 309, 284-287
  9. IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 5.2.2.3
  10. Balmaseda, M.A., K.E. Trenberth, and E. Källén (2013): Distictive climate signals in reanalysis of the global ocean heat content, Geophysical Research Letters 40, 1754-1759


Lizenzhinweis

Dieser Artikel ist ein Originalartikel des Klima-Wiki und steht unter der Creative Commons Lizenz Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland. Informationen zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können in den meisten Fällen durch Anklicken dieser Mediendateien abgerufen werden und sind andernfalls über Dieter Kasang zu erfragen. CC-by-sa.png
Kontakt: Dieter Kasang