Ökonomische Aspekte des Climate Engineering: Unterschied zwischen den Versionen

Aus Klimawandel
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 25: Zeile 25:
Die direkten externen Effekte ergeben sich bei RM Maßnamen also zum Beispiel durch das Ausbringungsmaterial. Bringt man Schwefel- oder andere Partikel in die Strasphäre ein um einfallendes Sonnenlicht zu reflektieren wird natürlich auch das optische Erscheinungsbild des "Himmels" beeinflusst und es kommt zu einem "weniger blauen" Himmel, aber dafür stärkeren und häufigeren "roten" Sonnenuntergängen (Robock 2008). Auch würde die Ausbringung von Schwefelpartikel den Wiederaufbau der Ozonverschicht verlangsamen, so dass sich die Schließung des Ozonlochs über der Artik um bis zu 70 Jahre verzögern könnte (Tilmes 2008).   
Die direkten externen Effekte ergeben sich bei RM Maßnamen also zum Beispiel durch das Ausbringungsmaterial. Bringt man Schwefel- oder andere Partikel in die Strasphäre ein um einfallendes Sonnenlicht zu reflektieren wird natürlich auch das optische Erscheinungsbild des "Himmels" beeinflusst und es kommt zu einem "weniger blauen" Himmel, aber dafür stärkeren und häufigeren "roten" Sonnenuntergängen (Robock 2008). Auch würde die Ausbringung von Schwefelpartikel den Wiederaufbau der Ozonverschicht verlangsamen, so dass sich die Schließung des Ozonlochs über der Artik um bis zu 70 Jahre verzögern könnte (Tilmes 2008).   


würde sich die Wahrnehmung eines blauen Himmels einschränken, allerdings gäbe es dafür mehr
Diese direkten externen Effekte müssen natürlich berücksichtigt werden, allerdings geht man davon aus, dass insbesondere die indirekten externen Effekte ein erhebliches Potential für die gesamtwirtschaftlichen Kosten aber auch Erträge haben. So kommt es bei dem Einsatz von RM Maßnahmen zu der Herstellung eines künstlichen Klimas, dass wir so noch nicht gehabt. Zum Beispiel ist es eben möglich bei relativ hoher CO2-Konzentration eine vergleichbare niedrige Temperatur zu haben. Dementsprechend besteht eine große Unsicherheit darüber wie dieses "künstliche" Klima dann wirklich aussieht.


Bei den SRM-Technologien wird der langwellige treibhausgasinduzierte Strahlungsantrieb durch eine Veränderung der kurzwelligen Strahlung ausgeglichen. Dadurch lässt sich im Hinblick auf die gesamte Strahlungsbilanz zwar ein Nettoeffekt von null herbeiführen, allerdings werden andere Klimavariablen wie zum Beispiel der Niederschlag unterschiedlich kompensiert. Die Modifikation von Zirruswolken (TRM) zielt zwar darauf ab, die langwellige Strahlung zu beeinflussen, hat aber auch Einfluss auf die kurzwellige Strahlung. Zwar liegen hierzu noch keine Studien vor, allerdings sind Veränderungen des regionalen Klimas und des Wasserkreislaufs mit entsprechenden Auswirkungen auf Niederschlagsmenge und -variabilität zu erwarten. Obwohl noch wenig über die unterschiedlichen Auswirkungen von RM-Maßnahmen auf das regionale Klima bekannt ist, muss man davon ausgehen, dass auch die wirtschaftlichen Effekte regional sehr unterschiedlich ausfallen können. Derzeit gibt es noch keine Studien über die Quantifizierung dieser Effekte.
Bei den SRM-Technologien wird der langwellige treibhausgasinduzierte Strahlungsantrieb durch eine Veränderung der kurzwelligen Strahlung ausgeglichen. Dadurch lässt sich im Hinblick auf die gesamte Strahlungsbilanz zwar ein Nettoeffekt von null herbeiführen, allerdings werden andere Klimavariablen wie zum Beispiel der Niederschlag unterschiedlich kompensiert. Die Modifikation von Zirruswolken (TRM) zielt zwar darauf ab, die langwellige Strahlung zu beeinflussen, hat aber auch Einfluss auf die kurzwellige Strahlung. Zwar liegen hierzu noch keine Studien vor, allerdings sind Veränderungen des regionalen Klimas und des Wasserkreislaufs mit entsprechenden Auswirkungen auf Niederschlagsmenge und -variabilität zu erwarten. Obwohl noch wenig über die unterschiedlichen Auswirkungen von RM-Maßnahmen auf das regionale Klima bekannt ist, muss man davon ausgehen, dass auch die wirtschaftlichen Effekte regional sehr unterschiedlich ausfallen können. Derzeit gibt es noch keine Studien über die Quantifizierung dieser Effekte.




Aber auch mit CDR Maßnahmen sind externe Effekte verbunden. Bei der Aufforstung und der Produktion von Biokohle ergeben sich ähnliche Verteilungseffekte durch Landnutzungskonflikte. Kostengünstige Aufforstungsmaßnahmen werden über kurz oder lang in Konkurrenz zur Nutzung von fruchtbarem Ackerland für die Nahrungsmittelproduktion treten. Die damit einhergehende Steigerung der Nahrungsmittelpreise würde auch eine Gefahr für die Ernährungssicherheit vieler Regionen darstellen. Preiseffekte ergeben sich natürlich auch auf den Märkten für CO<sub>2</sub>-Zertifikate, wenn CDR-Maßnahmen über dezentrale Anreizmechanismen wie die Vergabe eben dieser Zertifikate realisiert werden.
Aber auch mit CDR Maßnahmen sind externe Effekte verbunden. Bei der Aufforstung und der Produktion von Biokohle ergeben sich ähnliche Verteilungseffekte durch Landnutzungskonflikte. Kostengünstige Aufforstungsmaßnahmen werden über kurz oder lang in Konkurrenz zur Nutzung von fruchtbarem Ackerland für die Nahrungsmittelproduktion treten. Die damit einhergehende Steigerung der Nahrungsmittelpreise würde auch eine Gefahr für die Ernährungssicherheit vieler Regionen darstellen. Preiseffekte ergeben sich natürlich auch auf den Märkten für CO<sub>2</sub>-Zertifikate, wenn CDR-Maßnahmen über dezentrale Anreizmechanismen wie die Vergabe eben dieser Zertifikate realisiert werden.
Nichtsdestotrotz lassen sich in ökonomischen Modellen die unterschiedlichen Anreizwirkungen des Climate Engineerings untersuchen, da sich die verschiedenen Maßnahmen in zwei Gruppen aufteilen lassen mit jeweils sehr unterschiedlichen Charakteristiken. Die sogenannten CDR (Carbon Dioxide Removal) Maßnahmen wirken ursächlich auf den Klimawandel in dem sie der Atmosphäre Kohlenstoff entziehen. Da für deutliche Veränderungen der Temperatur aber sehr großen Mengen Kohlenstoff entzogen werden müssen, sind die operationalen Kosten dieser Maßnahmen relativ hoch und vergleichbar mit denen der Emissionskontrolle. Im Gegensatz dazu wirken die sogenannten RM (Radiation Management) Maßnahmen symptomatisch auf den Klimawandel in dem sie den positiven Strahlungsantrieb der Treibhausgasse durch andere negative Strahlungsantriebe ausgleichen. Da diese Maßnahmen daher nicht darauf angewiesen sind großen Mengen an Kohlenstoff zu bewegen um einen Einfluss auf die Strahlungsbilanz zu haben, sind ihre operationalen Kosten deutlich geringer. In einigen ökonomischen Studien wird angenommen, dass die direkten Kosten, das heißt Kosten die mit dem Material und der Ausbringung verbunden sind, praktisch gegen null gehen. Das bedeutet natürlich nicht, dass mit diesen Maßnahmen keine Kosten verbunden, sondern nur, dass ihre Kosten so gering sind, dass ihre Nichtberücksichtigung kaum Auswirkungen auf das optimale Ergebnis hat. Vereinfacht gesagt, werden die gesamtwirtschaftlichen Kosten der RM Maßnahmen durch deren externe Effekte dominiert, so dass man einen relativ geringen Fehler macht, wenn man die direkten Kosten nicht berücksichtigt und nur grob abschätzt.




== Climate Engineering und Klimapolitik ==


Nichtsdestotrotz lassen sich die Anreize von RM-Maßnahmen in theoretischen Modellen untersuchen. Dabei werden in der Regel mikroökonomische Partialmodelle angewandt, in denen die Summe aus Vermeidungs- und Schadenskosten minimiert wird. Die Vermeidungskosten werden durch herkömmliche Emissionskontrolle und durch CE-Maßnahmen bestimmt, die Schadenskosten durch den Klimawandel und die Nebeneffekte aus dem Einsatz der CE-Maßnahmeng bestimmt. Je nach Detailgrad der Modelle werden die durch Klimawandel verursachten wirtschaftlichen Konsequenzen aus der Temperaturveränderung, dem Anstieg der atmosphärischen CO<sub>2</sub>-Konzentration oder einer Kombination beider abgeleitet. Dabei können positive Effekte wie die CO<sub>2</sub>-Düngung und negative Effekte wie Ozeanversauerung auftreten.
Nichtsdestotrotz lassen sich die Anreize von RM-Maßnahmen in theoretischen Modellen untersuchen. Dabei werden in der Regel mikroökonomische Partialmodelle angewandt, in denen die Summe aus Vermeidungs- und Schadenskosten minimiert wird. Die Vermeidungskosten werden durch herkömmliche Emissionskontrolle und durch CE-Maßnahmen bestimmt, die Schadenskosten durch den Klimawandel und die Nebeneffekte aus dem Einsatz der CE-Maßnahmeng bestimmt. Je nach Detailgrad der Modelle werden die durch Klimawandel verursachten wirtschaftlichen Konsequenzen aus der Temperaturveränderung, dem Anstieg der atmosphärischen CO<sub>2</sub>-Konzentration oder einer Kombination beider abgeleitet. Dabei können positive Effekte wie die CO<sub>2</sub>-Düngung und negative Effekte wie Ozeanversauerung auftreten.

Version vom 4. Juni 2014, 07:16 Uhr

Climate Engineering umfasst sowohl Maßnahmen zur Reduktion der atmosphärischen Kohlenstoffkonzentration (Carbon Dioxide Removal, CDR) als auch Maßnahmen zur direkten Beeinflussung der Strahlungsbilanz (Radiation Management).[1] Diese Maßnahmen werden als mögliche Ergänzung oder sogar als Ersatz zu bzw. von Maßnahmen zur Emissionskontrolle betrachtet. Wirtschaftswissenschaftliche Forschung zu Climate Engineering beschäftigt sich mit den operativen Kosten, den gesamtwirtschaftlichen Kosten und den stragetischen Implikationen für die Klimapolitik.

Operative Kosten des Climate Engineering

Zu den operationalen Kosten der verschiedenen Maßnahmen liegen bislang noch kaum belastbare Informationen vor. Zwar gibt es vorläufige Schätzungen, aber diese berücksichtigen keine Einflüsse wie Preiseffekte oder Skaleneffekte. [2] Bei ersterem kommt es durch entsprechende Auswirkungen auf anderen Märkten zu einer erheblichen Veränderung der Preise für Einsatzgüter für die Maßnahme mit entsprechenden Kostensteigerungen. Auf einigen Rohstoff- und Gütermärkten würde die Nachfrage drastisch ansteigen, so dass entsprechende Preissteigerungen nicht vermeidbar sind. Preiseffekte ergeben sich auch auf der Finanzierungsseite, insbesondere wenn man berücksichtigt, dass mit zahlreichen Maßnahmen erhebliche Investitionsaufwendungen verbunden sind, die auch bei staatlicher Absicherung des Kreditrisikos die Kapitalkosten signifikant erhöhen können. Diese Marktmechanismen haben also zur Folge, dass die Betriebskosten der CE-Technologien bisher unterschätzt werden.

Die Bedeutung der ignorierten Preiseffekte lässt sich beispielsweise anhand der chemischen Verfahren zur marinen Kohlenstoffaufnahme im Ozean illustrieren. Für signifikante Reduktionen der atmosphärischen Kohlenstoffkonzentration würde bei direkter Ausbringung des Kalksteins in pulverisierter Form die zu bewegende Menge etwa 2/3 der jährlichen globalen Steinkohleförderung entsprechen. Die Realisierung dieser Technologien würde also eine massive Ausweitung der Produktionskapazitäten von Ausrüstungsgütern für den Bergbau und der Werften erfordern. Diese Expansion wird erwartungsgemäß von deutlichen Preissteigerungen auf diesen Märkten begleitet.[2]

Neben den nachfrageinduzierten Preissteigerungen können aber auch Skaleneffekte bei den verschiedenen Technologien auftreten. Während bei bewährten technischen Komponenten wie Schiffen oder Flugzeugen erwartet wird, dass die Preiseffekte dominieren, können bei neueren Technologiekomponenten auch die Skaleneffekte dominieren, so dass diese im Zeitablauf zu geringeren Kosten produziert werden können als zu Beginn der Entwicklungsphase. So schätzt z.B. Lackner (2010)[3] , dass bei einer großskaligen Anwendung von Air Capture die Betriebskosten von 200 USD auf bis zu 30 USD pro Tonne CO2 sinken können. Allerdings beschränkt sich diese Einschätzung bei Air Capture auf die Adsorptionstechnologie und berücksichtigt nicht die möglicherweise steigenden Lagerkosten bei einer großskaligen Anwendung.

Hinzu kommen konzeptionelle Probleme. Während die Kosten für CDR Maßnahmen üblicherweise in CO2 Einheiten (d.h. pro Tonne CO2) gemessen werden, misst man die Kosten für RM Maßnahmen in Veränderungen in der Strahlungsbilanz (d.h. in Watt pro Quadratmetern). Dabei werden wichtige Wechselwirkungen nicht berücksichtigt. Zum Beispiel würden großskalige Aufforstungsmaßnahmen dazu führen, dass relative helle Flächen (zum Beispiel Grassflächen) durch relativ dunkle Flächen (eben Wald) ersetzt werden so dass sich die Albedo der Erde verringert. Entsprechend verringert sich auch die Effektivität von Aufforstungsmaßnahmen zur Reduktion der Erdtemperatur, da der positive Einfluss auf die CO2-Konzentration durch den negativen Einfluss auf die Albedo teilweise aufgehoben wird.[4] Umgekehrt wird erwartet dass es beim Einsatz von RM Maßnahmen durch die Kombination aus CO22-Düngeeffekt sowie der Absenkung der Temperatur zu einer erhöhten Aufnahme von CO2 durch die terrestrische Senke kommt.[5] [6] [7] Dementsprechend erhöht sich die Effektivität von RM Maßnahmen da der direkte Einfluss auf die Temperatur zusätzlich durch den senkenden Einfluss auf die atmosphärische CO2-Konzentration ergänzt wird.

Versucht man nun die Kosten entsprechend umzurechnen, d.h. zum Beispiel die Kosten für CDR Maßnahmen in Einheiten der Strahlungsbilanz auszudrücken, ergibt sich das Problem einen angemessen Vergleichszeitraum zu definieren. Während vereinfacht gesagt eine Tonne CO2 nur "einmal" aus der Atmosphäre entnommen werden muss, bedarf es im Gegensatz dazu so lange den Einsatz von RM Maßnahmen bis sich diese Tonne CO2 natürlich abgebaut hat. Daher muss man RM Maßnahmen, trotz derer positiver Rückkopplung auf die natürliche CO2-Aufnahme, deutlich länger durchführen als CDR Maßnahmen. Aus diesem Grund kommt es bei einem zu kurzen Vergleichszeitraum zu einer Unterschätzung der Kosten für RM Maßnahmen. Die Royal Society (2009) [8] berücksichtigt in ihrer Studie zum Beispiel nur einen Zeitraum bis Jahr 2100 und ignoriert damit die Kosten für RM Maßnahmen die über diesen Zeitraum hinaus notwendig sind, sollte es zu keiner Reduktion der Emissionen kommen.

Solche Überlegungen zeigen, dass die Abschätzungen über die operativen Kosten verschiedener Maßnahmen des Climate Engineering noch mit erheblichen Unsicherheiten verbunden sind. Allerdings kann man aufgrund des verschiedenen Ansatzes der beiden Maßnahmengruppen sehr wohl einige grundsätzliche Überlegungen ableiten. Es existieren verschiedene CDR Maßnahmen (Aufforstung, Herstellung von Biokohle, Eisendüngung im Ozean) deren Kosten in etwa vergleichbar sind mit den Kosten herkömmlicher Maßnahmen zur Einschränkung der CO2-Emission. Damit sich aber spürbare Auswirkungen im Klima ergeben, müssen relativ große Mengen CO2 aus der Atmosphäre entfernt werden (einige hundert Gigatonnen CO2). Im Gegensatz dazu gibt es verschiedene RM Maßnahmen (z.B. Schwefelinjektion in die Stratosphäre) bei denen relativ geringe Mengen (weniger als 100 Megatonnen SO2) bewegt werden müssen, damit es zu einer spürbaren Veränderung im Klima kommt. Dementsprechend können solche RM Maßnahmen in etwa um den Faktor 1000 günstiger sein als CDR Maßnahmen. Diese Einschätzung ist aber nur gültig wenn man über die operativen Kosten spricht und die gesamtwirtschaftlichen Kosten außer Acht lässt.[2]

Gesamtwirtschaftliche Kosten des Climate Engineering

Insbesondere in der umweltökonomischen Analyse erfordern effiziente Entscheidungen die Berücksichtigung der gesamtwirtschaftlichen Kosten. Die gesamtwirtschaftlichen Kosten ergeben sich aus der Summe der operativen Kosten und der Kosten, die mit externen Effekten verbunden sind. Solche externen Effekte können sowohl negativ als auch positiv sein, d.h. entweder mit zusätzlichen Kosten oder eben auch Erträgen verbunden sein.

Bei den externen Effekten des Climate Engineerings kann man zusätzlich zwischen direkten und indirekten externen Effekten unterscheiden. Die direkten externen Effekte beziehen sich zum Beispiel auf die Schäden, die sich durch die Ausbringung eines Materials auf die Umwelt ergeben. Unter den indirekten externen Effekten werden Wirkungen verstanden, die sich durch Rückkopplungseffekte des Klimasystems ergeben und regional unterschiedlich ausfallen können. Diese indirekten klimatischen externen Effekte treten bei den RM-Technologien auf. Es wird davon ausgegangen, dass ins besondere mit diesen indirekten klimatischen externen Effekten erhebliche gesamtwirtschaftliche Kosten verbunden sind, so dass die gesamtwirtschaftlichen Kosten bei den RM-Maßnahmen vor allem durch diese Einflussgröße bestimmt wird.

Die direkten externen Effekte ergeben sich bei RM Maßnamen also zum Beispiel durch das Ausbringungsmaterial. Bringt man Schwefel- oder andere Partikel in die Strasphäre ein um einfallendes Sonnenlicht zu reflektieren wird natürlich auch das optische Erscheinungsbild des "Himmels" beeinflusst und es kommt zu einem "weniger blauen" Himmel, aber dafür stärkeren und häufigeren "roten" Sonnenuntergängen (Robock 2008). Auch würde die Ausbringung von Schwefelpartikel den Wiederaufbau der Ozonverschicht verlangsamen, so dass sich die Schließung des Ozonlochs über der Artik um bis zu 70 Jahre verzögern könnte (Tilmes 2008).

Diese direkten externen Effekte müssen natürlich berücksichtigt werden, allerdings geht man davon aus, dass insbesondere die indirekten externen Effekte ein erhebliches Potential für die gesamtwirtschaftlichen Kosten aber auch Erträge haben. So kommt es bei dem Einsatz von RM Maßnahmen zu der Herstellung eines künstlichen Klimas, dass wir so noch nicht gehabt. Zum Beispiel ist es eben möglich bei relativ hoher CO2-Konzentration eine vergleichbare niedrige Temperatur zu haben. Dementsprechend besteht eine große Unsicherheit darüber wie dieses "künstliche" Klima dann wirklich aussieht.

Bei den SRM-Technologien wird der langwellige treibhausgasinduzierte Strahlungsantrieb durch eine Veränderung der kurzwelligen Strahlung ausgeglichen. Dadurch lässt sich im Hinblick auf die gesamte Strahlungsbilanz zwar ein Nettoeffekt von null herbeiführen, allerdings werden andere Klimavariablen wie zum Beispiel der Niederschlag unterschiedlich kompensiert. Die Modifikation von Zirruswolken (TRM) zielt zwar darauf ab, die langwellige Strahlung zu beeinflussen, hat aber auch Einfluss auf die kurzwellige Strahlung. Zwar liegen hierzu noch keine Studien vor, allerdings sind Veränderungen des regionalen Klimas und des Wasserkreislaufs mit entsprechenden Auswirkungen auf Niederschlagsmenge und -variabilität zu erwarten. Obwohl noch wenig über die unterschiedlichen Auswirkungen von RM-Maßnahmen auf das regionale Klima bekannt ist, muss man davon ausgehen, dass auch die wirtschaftlichen Effekte regional sehr unterschiedlich ausfallen können. Derzeit gibt es noch keine Studien über die Quantifizierung dieser Effekte.


Aber auch mit CDR Maßnahmen sind externe Effekte verbunden. Bei der Aufforstung und der Produktion von Biokohle ergeben sich ähnliche Verteilungseffekte durch Landnutzungskonflikte. Kostengünstige Aufforstungsmaßnahmen werden über kurz oder lang in Konkurrenz zur Nutzung von fruchtbarem Ackerland für die Nahrungsmittelproduktion treten. Die damit einhergehende Steigerung der Nahrungsmittelpreise würde auch eine Gefahr für die Ernährungssicherheit vieler Regionen darstellen. Preiseffekte ergeben sich natürlich auch auf den Märkten für CO2-Zertifikate, wenn CDR-Maßnahmen über dezentrale Anreizmechanismen wie die Vergabe eben dieser Zertifikate realisiert werden.


Climate Engineering und Klimapolitik

Nichtsdestotrotz lassen sich die Anreize von RM-Maßnahmen in theoretischen Modellen untersuchen. Dabei werden in der Regel mikroökonomische Partialmodelle angewandt, in denen die Summe aus Vermeidungs- und Schadenskosten minimiert wird. Die Vermeidungskosten werden durch herkömmliche Emissionskontrolle und durch CE-Maßnahmen bestimmt, die Schadenskosten durch den Klimawandel und die Nebeneffekte aus dem Einsatz der CE-Maßnahmeng bestimmt. Je nach Detailgrad der Modelle werden die durch Klimawandel verursachten wirtschaftlichen Konsequenzen aus der Temperaturveränderung, dem Anstieg der atmosphärischen CO2-Konzentration oder einer Kombination beider abgeleitet. Dabei können positive Effekte wie die CO2-Düngung und negative Effekte wie Ozeanversauerung auftreten.

Ein wichtiges Ergebnis der theoretischen Analysen ist die Substitutionalität von CE-Maßnahmen und Emissionskontrolle. Sind CE-Maßnahmen (gesamtwirtschaftlich) kostengünstig, dann kommen sie zum Einsatz und gleichzeitig werden die Anstrengungen zu einer Verringerung der Emissionen reduziert. In dynamischen Modellen kann gezeigt werden, dass es unter gewissen Annahmen sinnvoll sein könnte, Emissionskontrolle durch RM zu ersetzen, wenn das Klimasystem schnell beeinflusst werden muss. Wie bereits diskutiert, müssen bei RM-Maßnahmen nur relativ geringe Mengen bewegt werden um einen signifikanten und damit dann auch schnellen Einfluss auf die Temperatur zu haben. In dieser Hinsicht ist RM praktisch alternativlos, da die Kontrolle von Emissionen und CDR nicht über ein hinreichend großes kurzfristiges Potential verfügen, um schnell starke Änderungen der Temperatur herbeizuführen. Moreno-Cruz und Keith (2012) untersuchen diese Frage mit Hilfe eines intertemporalen Modells, bei dem zu einem späteren Zeitpunkt die Unsicherheit über die Klimasensitivität aufgehoben wird und entsprechend mit einem Einsatz von RM reagiert werden kann. Ohne RM sind deutlich größere Emissionsreduktionen notwendig als bei der Verfügbarkeit dieser Technologien. Sie zeigen, dass die Verfügbarkeit von RM-Technologien als eine Form der Versicherung gegen unsicheren, beziehungsweise abrupten, also unerwarteten Klimawandel angesehen werden kann.

Dabei ist der optimale Umfang der RM-Maßnahmen umso höher (und entsprechend das Ausmaß der Vermeidung umso niedriger), je geringer der Schaden der RM-Maßnahmen ist, und je höher ihre Effektivität ist. Aber auch wenn die Effektivität der gewählten RM-Technologie gering ist und die direkt damit verbundenen Schäden durch Nebeneffekte hoch sind, bleibt es optimal, RM bei hoher Klimasensitivität einzusetzen, wenn die Schäden durch den Klimawandel konvex zunehmen (Moreno-Cruz und Keith 2012). Trotzdem verliert der Versicherungscharakter von RM an Bedeutung, wenn die Unsicherheit über dessen Effektivität und Schäden zunimmt. Dementsprechend werden die Emissionen wieder stärker reduziert. Es entsteht also ein Trade-off zwischen dem Risiko eines möglicherweise katastrophalen Klimawandels und dem Risiko möglicherweise weitreichender Nebeneffekte durch den RM-Einsatz. Im Hinblick auf die Kombination aus Politiken der Kontrolle von Emissionen und von RM, argumentieren Moreno-Cruz und Keith (2012), dass es sich bei den beiden Maßnahmen um Risikokomplemente handelt.

Das Risiko eines Einsatzes von RM bezieht sich aber nicht nur auf deren Effektivität oder mögliche Nebenwirkungen, sondern auch auf die Möglichkeit einer Unterbrechung der Maßnahmen. Der Abbruch von CDR-Maßnahmen würde zwar wegen des möglicherweise hohen Kapitaleinsatzes wirtschaftliche Verluste verursachen, hätte aber keine unmittelbaren Auswirkungen auf das Klima. Im Gegensatz dazu führt ein Abbruch von RM zu einem relativ schnellen und drastischen Klimawandel. Mit der Absicherung gegen Klimarisiken entstehen entsprechende neue Abhängigkeiten; denn die RM-Maßnahmen müssen, wenn sie einmal begonnen wurden, über lange Zeit aufrechterhalten werden (lock-in-Effekt). Dieses Ergebnis wird durch die Arbeit von Brovkin et al. (2009) unterstützt. In ihrer naturwissenschaftlichen Studie bestätigen sie grundsätzlich, dass RM-Maßnahmen gegen Klimarisiken absichern können und dass durch das Absenken der Temperatur bei gleichzeitigem CO2-Düngungseffekt die atmosphärische CO2-Konzentration niedriger ist als im BAU-Szenario ohne RM. Allerdings zeigen sie auch, dass der Einsatz von RM für mehrere tausend Jahre fortgesetzt werden muss, wenn nicht gleichzeitig ein anderer Emissionspfad eingeschlagen wird oder andere Wege gefunden werden, die atmosphärische CO2-Konzentration zu reduzieren.

Diese Überlegungen zeigen, dass RM-Maßnahmen eine Option zur Auseinandersetzung mit dem anthropogenen Klimawandel darstellt, die in ihren Wirkungen und Anreizen sehr deutlich von der Emissionskontrolle abweicht. Dabei gilt es zusätzlich zu Berücksichtigen, dass bei den obigen Überlegungen noch überhaupt nicht auf internationale Verteilungswirkungen und die damit verbundenen strategischen Anreize eingegangen wurde. Die quantitative Bewertung dieser Aspekte bedarf aber umso mehr die Entwicklung sogenannter Integrated Assessment Modelle für regionale Klimaveränderungen, die erste Abschätzung basierend auf Simulationen naturwissenschaftlicher Ergebnisse zulassen. Natürlich existieren bereits sowohl Integrated Assessment Modelle als auch empirische Untersuchungen zu Abschätzungen der regionalen Kosten des Klimawandels, allerdings wird bei den RM-Maßnahmen ein künstliches Klima geschaffen, so dass viele der zugrundeliegenden Wechselbeziehungen in den existierenden Studien nicht mehr gelten.

Einzelnachweise

  1. Rickels, W.; Klepper, G.; Dovern, J.; Betz, G.; Brachatzek, N.; Cacean, S.; Güssow, K.; Heintzenberg J.; Hiller, S.; Hoose, C.; Leisner, T.; Oschlies, A.; Platt, U.; Proelß, A.; Renn, O.; Schäfer, S.; Zürn M. (2011): Large-Scale Intentional Interventions into the Climate System? Assessing the Climate Engineering Debate. Scoping report for the German Ministry of Education and Research (BMBF), Kiel Earth Institute, Kiel. http://www.kiel-earth-institute.de/sondierungsstudie-climate-engineering.html?file=tl_files/media/downloads/CE_gesamtstudie.pdf
  2. 2,0 2,1 2,2 Klepper, G. and Rickels, W. (2012): The Real Economics of Climate Engineering, Economics Research International, doi:10.1155/2012/316564. http://www.hindawi.com/journals/ecri/2012/316564/
  3. Lackner, K. S. 2010. Washing carbon out of the air. Scientific American 302, 66 – 71.
  4. Bathiany, S., Claussen, M., Brovkin, V., Raddatz, T., Gayler, V. 2010. Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences 7 (5): 1383–1399.
  5. Matthews, H. D., Caldeira, K. 2007. Transient climate-carbon simulations of planetary geoengineering. Proceedings of the National Academy of Sciences 104: 9949–9954.
  6. Donohue, R. J., Roderick, M. L., McVicar, T. R., Farquhar, G. D. 2013. Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments. Geophysical Research Letters 40: 3031–3035.
  7. Keller, D.P., Oschlies, A., Feng, E.Y. 2014. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nature Communications 5, 10.1038/ncomms4304.
  8. Royal Society. 2009. Geoengineering the Climate: Science, governance and uncertainty. RS Policy document, 10/09. London.