Wetterextreme und Klimawandel: Unterschied zwischen den Versionen

Aus Klimawandel
KKeine Bearbeitungszusammenfassung
Zeile 12: Zeile 12:


== Veränderungen von Extremereignissen ==
== Veränderungen von Extremereignissen ==
[[Bild:Climate extremes trends.jpg|thumb|540px|Veränderungen in der Häufigkeit bzw. Intensität verschiedener Klimaextreme seit der Mitte des 20. Jahrhunderts (Tropische Wirbelstürme über dem Nordatlantik: seit den 1970er Jahren). Die Pfeile zeigen die Richtung der Veränderung an.]]
[[Bild:Climate extremes trends.jpg|thumb|540px|Abb. 1: Veränderungen in der Häufigkeit bzw. Intensität verschiedener Klimaextreme seit der Mitte des 20. Jahrhunderts (Tropische Wirbelstürme über dem Nordatlantik: seit den 1970er Jahren). Die Pfeile zeigen die Richtung der Veränderung an.]]
Extremereignisse kommen per Definition selten vor. Das macht es so schwierig, einen Trend nachzuweisen, da über die erforderlichen Zeiträume in vielen Fällen weder von der Menge noch von der Qualität her geeignete Daten vorliegen.<ref> IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 3.8.1</ref><ref>IPCC (2012): [http://ipcc-wg2.gov/SREX/ Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation], 3.2.1</ref>    Gerade bei kurzfristigen Extremereignissen wie [[Starkniederschläge und Hochwasser|Starkniederschlägen]] oder Tagesmaximum-Temperaturen sind zeitlich dichte Datenreihen erforderlich, um eine Veränderung über einen größeren Zeitraum festzustellen. Vielfach gibt es solche Daten aber erst seit der Mitte des 20. Jahrhunderts, in manchen Regionen erst seit den 1970er Jahren. Hinzu kommt, dass in manchen Ländern immer noch zeitlich hoch aufgelöste Datenreihen nicht frei zugänglich sind. Ein weiteres Problem besteht darin, dass die Messungen häufig nicht nach denselben Kriterien vorgenommen wurden.
Extremereignisse kommen per Definition selten vor. Das macht es so schwierig, einen Trend nachzuweisen, da über die erforderlichen Zeiträume in vielen Fällen weder von der Menge noch von der Qualität her geeignete Daten vorliegen.<ref> IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 3.8.1</ref><ref>IPCC (2012): [http://ipcc-wg2.gov/SREX/ Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation], 3.2.1</ref>    Gerade bei kurzfristigen Extremereignissen wie [[Starkniederschläge und Hochwasser|Starkniederschlägen]] oder Tagesmaximum-Temperaturen sind zeitlich dichte Datenreihen erforderlich, um eine Veränderung über einen größeren Zeitraum festzustellen. Vielfach gibt es solche Daten aber erst seit der Mitte des 20. Jahrhunderts, in manchen Regionen erst seit den 1970er Jahren. Hinzu kommt, dass in manchen Ländern immer noch zeitlich hoch aufgelöste Datenreihen nicht frei zugänglich sind. Ein weiteres Problem besteht darin, dass die Messungen häufig nicht nach denselben Kriterien vorgenommen wurden.


Am besten ist die Datenlage noch bei Temperaturen, gefolgt von Niederschlägen. [[Tornados]] und Gewitter jedoch sind in vielen Teilen der Welt nur sehr schlecht beobachtet worden. Über [[außertropische Stürme]] existieren selbst in den entwickelten Ländern geschlossene Datenreihen zumeist erst seit ca. 1950. Noch schwieriger ist die Lage bei [[Tropische Wirbelstürme|tropischen Wirbelstürmen]], weil sich hier die Beobachtungsmethoden, von der Land- und Schiffsbeobachtung über Flugzeuge und Satelliten, im Laufe der Zeit stark geändert haben.
Am besten ist die Datenlage noch bei Temperaturen, gefolgt von Niederschlägen. [[Tornados]] und Gewitter jedoch sind in vielen Teilen der Welt nur sehr schlecht beobachtet worden. Über [[außertropische Stürme]] existieren selbst in den entwickelten Ländern geschlossene Datenreihen zumeist erst seit ca. 1950. Noch schwieriger ist die Lage bei [[Tropische Wirbelstürme|tropischen Wirbelstürmen]], weil sich hier die Beobachtungsmethoden, von der Land- und Schiffsbeobachtung über Flugzeuge und Satelliten, im Laufe der Zeit stark geändert haben.


Wo genügend Daten vorliegen, sind jedoch in vielen Fällen eindeutige Trends nachweisbar.<ref>IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, Table 3.8</ref><ref>Quelle: IPCC (2013): Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis, 2.6</ref> So lässt sich über 70 % der globalen Landgebiete seit Mitte des 20. Jahrhunderts auf der einen Seite eine Abnahme kalter Nächte und Frosttage und auf der anderen Seite eine Zunahme hoher Tages- und Nachttemperaturen feststellen. Ähnlich nehmen auch die extremen Kältewellen ab und [[Hitzewellen]] zu. Auch bei Starkniederschlägen kann in vielen Gebieten der mittleren Breiten ein Trend zu häufigeren Ereignissen ausgemacht werden, und zwar auch in solchen Gebieten, in denen die mittleren Niederschläge abnehmen. In vielen Landregionen der Welt haben seit den 1970er Jahren außerdem die Gebiete zugenommen, die von [[Dürren]] betroffen wurden. Bei tropischen Wirbelstürmen konnte eine Zunahme der Gesamtzahl nicht nachgewiesen werden, jedoch eine Zunahme der Stürme der Kategorie 4 und 5. Besonders im Jahrzehnt 2000-2011 wurde eine außergewöhnliche Zahl an extremen Wetterereignissen festgestellt.<ref name="Coumou" />  Insgesamt zeichnet sich bei den extremen Wetterereignissen eine Tendenz ab, die durchaus in Einklang steht mit der globalen Erwärmung. Gibt es aber tatsächlich einen ableitbaren Zusammenhang?
Wo genügend Daten vorliegen, sind jedoch in vielen Fällen eindeutige Trends nachweisbar.<ref>IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, Table 3.8</ref><ref>IPCC (2013): Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis, 2.6</ref> So lässt sich über 70 % der globalen Landgebiete seit Mitte des 20. Jahrhunderts auf der einen Seite eine Abnahme kalter Nächte und Frosttage und auf der anderen Seite eine Zunahme hoher Tages- und Nachttemperaturen feststellen. Ähnlich nehmen auch die extremen Kältewellen ab und [[Hitzewellen]] zu. Auch bei Starkniederschlägen kann in vielen Gebieten der mittleren Breiten ein Trend zu häufigeren Ereignissen ausgemacht werden, und zwar auch in solchen Gebieten, in denen die mittleren Niederschläge abnehmen. In vielen Landregionen der Welt haben seit den 1970er Jahren außerdem die Gebiete zugenommen, die von [[Dürren]] betroffen wurden, in anderen wie im zentralen Nordamerika und Nordwest-Australien allerdings abgenommen (vgl. Abb. 1). Bei tropischen Wirbelstürmen konnte eine Zunahme der Gesamtzahl nicht nachgewiesen werden, jedoch eine Zunahme der Stürme der Kategorie 4 und 5. Besonders im Jahrzehnt 2000-2011 wurde eine außergewöhnliche Zahl an extremen Wetterereignissen festgestellt.<ref name="Coumou" />  Insgesamt zeichnet sich bei den extremen Wetterereignissen eine Tendenz ab, die durchaus in Einklang steht mit der globalen Erwärmung. Gibt es aber tatsächlich einen ableitbaren Zusammenhang?


== Ursachen der Veränderungen ==
== Ursachen der Veränderungen ==
Zeile 24: Zeile 24:


Ob der anthropogene globale [[Klimawandel]] als Ursache für die Zunahme von Extremereignissen geltend gemacht werden kann, hängt auch von der Art der Extremereignisse ab. Bei manchen Wetterextremen lassen einfache physikalische Überlegungen einen  solchen Zusammenhang annehmen.<ref name="Coumou">Coumou, D., S. Rahmstorf (2012): A decade of weather extremes, Nature Climate Change, doi:10.1038/nclimate1452</ref>  Bei einer Erhöhung der mittleren Temperatur wird es auch zu einer Zunahme von hohen Temperaturen bzw. [[Hitzewellen]] kommen, wenn alle anderen Faktoren unverändert bleiben. Eine wärmere [[Atmosphäre]] hat eine höhere [[Verdunstung]] zur Folge. Daraus können in manchen Regionen mehr [[Dürren]] entstehen. In anderen Regionen kann es zu stärkeren [[Niederschläge]]n kommen, weil die Atmosphäre mehr Wasserdampf enthält. Außerdem steht in der Atmosphäre durch den Wasserdampf mehr latente Energie als Antrieb von [[Außertropische Stürme|Stürmen]] zur Verfügung. Also könnten auch stärkere Stürme die Folge sein. Diese Zusammenhänge sind jedoch nur dann zwingend, wenn alle anderen Bedingen, z.B. auch die natürlichen klimatischen Verhältnisse, gleich bleiben.
Ob der anthropogene globale [[Klimawandel]] als Ursache für die Zunahme von Extremereignissen geltend gemacht werden kann, hängt auch von der Art der Extremereignisse ab. Bei manchen Wetterextremen lassen einfache physikalische Überlegungen einen  solchen Zusammenhang annehmen.<ref name="Coumou">Coumou, D., S. Rahmstorf (2012): A decade of weather extremes, Nature Climate Change, doi:10.1038/nclimate1452</ref>  Bei einer Erhöhung der mittleren Temperatur wird es auch zu einer Zunahme von hohen Temperaturen bzw. [[Hitzewellen]] kommen, wenn alle anderen Faktoren unverändert bleiben. Eine wärmere [[Atmosphäre]] hat eine höhere [[Verdunstung]] zur Folge. Daraus können in manchen Regionen mehr [[Dürren]] entstehen. In anderen Regionen kann es zu stärkeren [[Niederschläge]]n kommen, weil die Atmosphäre mehr Wasserdampf enthält. Außerdem steht in der Atmosphäre durch den Wasserdampf mehr latente Energie als Antrieb von [[Außertropische Stürme|Stürmen]] zur Verfügung. Also könnten auch stärkere Stürme die Folge sein. Diese Zusammenhänge sind jedoch nur dann zwingend, wenn alle anderen Bedingen, z.B. auch die natürlichen klimatischen Verhältnisse, gleich bleiben.
[[Bild:Extreme_haeufung.gif|thumb|420px|Klimaänderung und Extreme]]
[[Bild:Extreme_haeufung.gif|thumb|420px|Abb. 2: Klimaänderung und Extreme]]
Ein verändertes Klima wie die globale Erwärmung durch eine höhere Konzentration von Treibhausgasen in der Atmosphäre führt also höchstwahrscheinlich auch zu Änderungen der Extremereignisse. Zugleich können aber auch [[natürliche Klimaschwankungen]] zu mehr oder stärkeren Extremen führen. Da natürliche und anthropogene Einflussfaktoren in der Regel immer zusammen wirken, ist es im Einzelfall schwierig, den globalen Klimawandel als Ursache für ein bestimmtes Extremereignis nachzuweisen, das in der Regel nicht aus einer einzigen Ursache wie einer höheren Mitteltemperatur abzuleiten ist.<ref>IPCC (2012): [http://ipcc-wg2.gov/SREX/ Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation], FAQ 3.2</ref> So entstand die [[Hitzewellen Europa|europäische Hitzewelle 2003]] durch ein lang anhaltendes [[Hochdruckgebiet|Hochdrucksystem]] in einer [[Blockierende Wetterlage|blockierenden Wetterlage]], das eine starke Sonneneinstrahlung möglich machte, und aufgrund von ausgetrockneten Böden durch eine vorhergehende Trockenheit. Die [[Hitzewellen Europa|Hitzewelle in Russland]] und die starken [[Starkregen Südasien|Überschwemmungen in Pakistan]] im Jahre 2010 waren ebenfalls Folge einer blockierenden Wetterlage mit einem stationären Hoch über Osteuropa und einem anhaltenden Tief über Pakistan. Solche Bedingungen können auch auf natürliche Weise entstehen, sind aber aufgrund veränderter Temperaturverhältnisse zwischen mittleren und hohen Breiten infolge der globalen Erwärmung wahrscheinlicher geworden.<ref name="Coumou" />  Insofern ist auch häufiger mit Hitzewellen wie 2003 in West- und Mittel- und 2010 in Osteuropa durch den Klimawandel zu rechnen. Schon das Ereignis zweier so extremer Hitzeereignisse auf demselben Kontinent in einem Jahrzehnt kann als Beleg dafür verstanden werden. Der anthropogene Klimawandel macht es also wahrscheinlicher, dass bestimmte Extremereignisse intensiver werden und häufiger auftreten. Umgekehrt lässt es sich aber nicht bei einem einzelnen Extremereignis beweisen, dass es durch die globale Erwärmung bedingt ist.
Ein verändertes Klima wie die globale Erwärmung durch eine höhere Konzentration von Treibhausgasen in der Atmosphäre führt also höchstwahrscheinlich auch zu Änderungen der Extremereignisse. Zugleich können aber auch [[natürliche Klimaschwankungen]] zu mehr oder stärkeren Extremen führen. Da natürliche und anthropogene Einflussfaktoren in der Regel immer zusammen wirken, ist es im Einzelfall schwierig, den globalen Klimawandel als Ursache für ein bestimmtes Extremereignis nachzuweisen, das in der Regel nicht aus einer einzigen Ursache wie einer höheren Mitteltemperatur abzuleiten ist.<ref>IPCC (2012): [http://ipcc-wg2.gov/SREX/ Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation], FAQ 3.2</ref> So entstand die [[Hitzewellen Europa|europäische Hitzewelle 2003]] durch ein lang anhaltendes [[Hochdruckgebiet|Hochdrucksystem]] in einer [[Blockierende Wetterlage|blockierenden Wetterlage]], das eine starke Sonneneinstrahlung möglich machte, und aufgrund von ausgetrockneten Böden durch eine vorhergehende Trockenheit. Die [[Hitzewellen Europa|Hitzewelle in Russland]] und die starken [[Starkregen Südasien|Überschwemmungen in Pakistan]] im Jahre 2010 waren ebenfalls Folge einer blockierenden Wetterlage mit einem stationären Hoch über Osteuropa und einem anhaltenden Tief über Pakistan. Solche Bedingungen können auch auf natürliche Weise entstehen, sind aber aufgrund veränderter Temperaturverhältnisse zwischen mittleren und hohen Breiten infolge der globalen Erwärmung wahrscheinlicher geworden.<ref name="Coumou" />  Insofern ist auch häufiger mit Hitzewellen wie 2003 in West- und Mittel- und 2010 in Osteuropa durch den Klimawandel zu rechnen. Schon das Ereignis zweier so extremer Hitzeereignisse auf demselben Kontinent in einem Jahrzehnt kann als Beleg dafür verstanden werden. Der anthropogene Klimawandel macht es also wahrscheinlicher, dass bestimmte Extremereignisse intensiver werden und häufiger auftreten. Umgekehrt lässt es sich aber nicht bei einem einzelnen Extremereignis beweisen, dass es durch die globale Erwärmung bedingt ist.



Version vom 7. Oktober 2014, 15:55 Uhr

Für die regionalen Folgen des Klimawandels von besonderer Bedeutung sind mögliche Veränderungen von Extremereignissen wie Hitzeperioden, Starkniederschläge und Hochwasserereignisse, Stürme (siehe auch Tropische Wirbelstürme, Tornados) und Sturmfluten. Sie können zu Naturkatastrophen mit erheblichen Schäden und dem Verlust von Menschenleben führen. Katastrophen der letzten Zeit wie die Überschwemmungen am chinesischen Jangtse 1998, das Jahrhunderthochwasser am Mississippi 1993, der europäische Hitzesommer 2003 oder die Überschwemmungen in Pakistan 2010 haben nicht nur wegen der Opfer und Schäden, sondern auch wegen der möglichen Beziehung zum anthropogenen Klimawandel in der Öffentlichkeit besondere Aufmerksamkeit erregt. Dabei hat die Frage, ob extreme Wetterereignisse in letzter Zeit zugenommen haben und künftig weiter zunehmen könnten und ob diese Zunahme auf den Klimawandel zurückzuführen ist, eine zentrale Rolle gespielt.

Was sind Wetter- und Klimaextreme?

Es gibt keine einheitliche Definition für Wetter- und Klimaextreme. Grundsätzlich lassen sich zwei Ansätze unterscheiden:

  1. der Bezug auf die Wahrscheinlichkeit des Eintretens des Ereignisses,
  2. der Bezug auf einen bestimmten Grenzwert.

Schäden durch Wetterextreme

Hitzewellen, Überschwemmungen und Stürme kommen dem Interesse der Medien entgegen, den Klimawandel als katastrophales Ereignis darzustellen. Und so vermitteln zumindest die Medienberichte den Eindruck, dass die Welt in jüngster Zeit von immer mehr und immer stärkeren Unwettern heimgesucht wurde. Das ist jedoch nicht in jeder Hinsicht zutreffend.

Veränderungen von Extremereignissen

Abb. 1: Veränderungen in der Häufigkeit bzw. Intensität verschiedener Klimaextreme seit der Mitte des 20. Jahrhunderts (Tropische Wirbelstürme über dem Nordatlantik: seit den 1970er Jahren). Die Pfeile zeigen die Richtung der Veränderung an.

Extremereignisse kommen per Definition selten vor. Das macht es so schwierig, einen Trend nachzuweisen, da über die erforderlichen Zeiträume in vielen Fällen weder von der Menge noch von der Qualität her geeignete Daten vorliegen.[1][2] Gerade bei kurzfristigen Extremereignissen wie Starkniederschlägen oder Tagesmaximum-Temperaturen sind zeitlich dichte Datenreihen erforderlich, um eine Veränderung über einen größeren Zeitraum festzustellen. Vielfach gibt es solche Daten aber erst seit der Mitte des 20. Jahrhunderts, in manchen Regionen erst seit den 1970er Jahren. Hinzu kommt, dass in manchen Ländern immer noch zeitlich hoch aufgelöste Datenreihen nicht frei zugänglich sind. Ein weiteres Problem besteht darin, dass die Messungen häufig nicht nach denselben Kriterien vorgenommen wurden.

Am besten ist die Datenlage noch bei Temperaturen, gefolgt von Niederschlägen. Tornados und Gewitter jedoch sind in vielen Teilen der Welt nur sehr schlecht beobachtet worden. Über außertropische Stürme existieren selbst in den entwickelten Ländern geschlossene Datenreihen zumeist erst seit ca. 1950. Noch schwieriger ist die Lage bei tropischen Wirbelstürmen, weil sich hier die Beobachtungsmethoden, von der Land- und Schiffsbeobachtung über Flugzeuge und Satelliten, im Laufe der Zeit stark geändert haben.

Wo genügend Daten vorliegen, sind jedoch in vielen Fällen eindeutige Trends nachweisbar.[3][4] So lässt sich über 70 % der globalen Landgebiete seit Mitte des 20. Jahrhunderts auf der einen Seite eine Abnahme kalter Nächte und Frosttage und auf der anderen Seite eine Zunahme hoher Tages- und Nachttemperaturen feststellen. Ähnlich nehmen auch die extremen Kältewellen ab und Hitzewellen zu. Auch bei Starkniederschlägen kann in vielen Gebieten der mittleren Breiten ein Trend zu häufigeren Ereignissen ausgemacht werden, und zwar auch in solchen Gebieten, in denen die mittleren Niederschläge abnehmen. In vielen Landregionen der Welt haben seit den 1970er Jahren außerdem die Gebiete zugenommen, die von Dürren betroffen wurden, in anderen wie im zentralen Nordamerika und Nordwest-Australien allerdings abgenommen (vgl. Abb. 1). Bei tropischen Wirbelstürmen konnte eine Zunahme der Gesamtzahl nicht nachgewiesen werden, jedoch eine Zunahme der Stürme der Kategorie 4 und 5. Besonders im Jahrzehnt 2000-2011 wurde eine außergewöhnliche Zahl an extremen Wetterereignissen festgestellt.[5] Insgesamt zeichnet sich bei den extremen Wetterereignissen eine Tendenz ab, die durchaus in Einklang steht mit der globalen Erwärmung. Gibt es aber tatsächlich einen ableitbaren Zusammenhang?

Ursachen der Veränderungen

Extremereignisse treten aus verschiedenen Gründen auf, die sowohl regional begrenzt sein, aber auch wie der globale Klimawandel eine weltweite Dimension besitzen können oder aus einer Kombination von beiden bestehen. Der menschliche Einfluss durch die Emission von Treibhausgasen auf das mittlere globale Klima in den letzten Jahrzehnten gilt in der Klimaforschung als gesichert. Das gilt insbesondere für die Erhöhung der Temperaturen sowohl im globalen wie im kontinentalen Maßstab. Ebenso gesichert ist, dass anthropogene Aerosole der Erwärmung entgegen gewirkt haben, die sonst noch höher ausgefallen wäre. Damit im Zusammenhang steht auch der menschliche Einfluss auf den Wasserdampfgehalt der Atmosphäre. Bei einem Grad Erwärmung erhöht sich die Aufnahmekapazität der Atmosphäre von Wasserdampf um 7 %. Der höhere Wasserdampfgehalt wiederum beeinflusst den Niederschlag.

Ob der anthropogene globale Klimawandel als Ursache für die Zunahme von Extremereignissen geltend gemacht werden kann, hängt auch von der Art der Extremereignisse ab. Bei manchen Wetterextremen lassen einfache physikalische Überlegungen einen solchen Zusammenhang annehmen.[5] Bei einer Erhöhung der mittleren Temperatur wird es auch zu einer Zunahme von hohen Temperaturen bzw. Hitzewellen kommen, wenn alle anderen Faktoren unverändert bleiben. Eine wärmere Atmosphäre hat eine höhere Verdunstung zur Folge. Daraus können in manchen Regionen mehr Dürren entstehen. In anderen Regionen kann es zu stärkeren Niederschlägen kommen, weil die Atmosphäre mehr Wasserdampf enthält. Außerdem steht in der Atmosphäre durch den Wasserdampf mehr latente Energie als Antrieb von Stürmen zur Verfügung. Also könnten auch stärkere Stürme die Folge sein. Diese Zusammenhänge sind jedoch nur dann zwingend, wenn alle anderen Bedingen, z.B. auch die natürlichen klimatischen Verhältnisse, gleich bleiben.

Abb. 2: Klimaänderung und Extreme

Ein verändertes Klima wie die globale Erwärmung durch eine höhere Konzentration von Treibhausgasen in der Atmosphäre führt also höchstwahrscheinlich auch zu Änderungen der Extremereignisse. Zugleich können aber auch natürliche Klimaschwankungen zu mehr oder stärkeren Extremen führen. Da natürliche und anthropogene Einflussfaktoren in der Regel immer zusammen wirken, ist es im Einzelfall schwierig, den globalen Klimawandel als Ursache für ein bestimmtes Extremereignis nachzuweisen, das in der Regel nicht aus einer einzigen Ursache wie einer höheren Mitteltemperatur abzuleiten ist.[6] So entstand die europäische Hitzewelle 2003 durch ein lang anhaltendes Hochdrucksystem in einer blockierenden Wetterlage, das eine starke Sonneneinstrahlung möglich machte, und aufgrund von ausgetrockneten Böden durch eine vorhergehende Trockenheit. Die Hitzewelle in Russland und die starken Überschwemmungen in Pakistan im Jahre 2010 waren ebenfalls Folge einer blockierenden Wetterlage mit einem stationären Hoch über Osteuropa und einem anhaltenden Tief über Pakistan. Solche Bedingungen können auch auf natürliche Weise entstehen, sind aber aufgrund veränderter Temperaturverhältnisse zwischen mittleren und hohen Breiten infolge der globalen Erwärmung wahrscheinlicher geworden.[5] Insofern ist auch häufiger mit Hitzewellen wie 2003 in West- und Mittel- und 2010 in Osteuropa durch den Klimawandel zu rechnen. Schon das Ereignis zweier so extremer Hitzeereignisse auf demselben Kontinent in einem Jahrzehnt kann als Beleg dafür verstanden werden. Der anthropogene Klimawandel macht es also wahrscheinlicher, dass bestimmte Extremereignisse intensiver werden und häufiger auftreten. Umgekehrt lässt es sich aber nicht bei einem einzelnen Extremereignis beweisen, dass es durch die globale Erwärmung bedingt ist.

Einzelnachweise

  1. IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 3.8.1
  2. IPCC (2012): Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, 3.2.1
  3. IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, Table 3.8
  4. IPCC (2013): Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis, 2.6
  5. 5,0 5,1 5,2 Coumou, D., S. Rahmstorf (2012): A decade of weather extremes, Nature Climate Change, doi:10.1038/nclimate1452
  6. IPCC (2012): Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, FAQ 3.2

Weblinks

Lizenzhinweis

Dieser Artikel ist ein Originalartikel des Klima-Wiki und steht unter der Creative Commons Lizenz Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland. Informationen zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können in den meisten Fällen durch Anklicken dieser Mediendateien abgerufen werden und sind andernfalls über Dieter Kasang zu erfragen. CC-by-sa.png
Kontakt: Dieter Kasang