Marine Ökosysteme: Unterschied zwischen den Versionen

Aus Klimawandel
Wechseln zu: Navigation, Suche
K (Lizenzhinweis)
 
(62 dazwischenliegende Versionen von 8 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
== Ozean und Kohlenstoffdioxid ==
+
[[Bild:Maldivesfish2.jpg|thumb|420px|Fische und Korallenriffe vor den Malediven]]
+
== Gefährdungsfaktoren ==
Im Meereswasser wird Kohlendioxid aus der Atmosphäre gelöst. Das im Ozean gelöste CO<sub>2</sub> liegt in drei verschiedenen Formen vor: als gelöstes Kohlendioxid-Gas (CO<sub>2</sub>), als Hydrogenkarbonat (HCO<sub>3</sub><sup>-</sup>) und als Karbonat (CO<sub>3</sub><sup>2-</sup>), zusammengefasst als DIC (dissolved inorganic carbon = gelöster anorganischer Kohlenstoff) bezeichnet. Durch physikalische und biologische Prozesse werden die Kohlenstoffverbindungen im Meereswasser verfrachtet.
 
  
=== physikalische Kohlenstoff-Pumpe ===
+
=== Bedeutung mariner Ökoysteme ===
+
 
[[Bild:OzeanischerKohlenstoffkreislauf.gif|thumb|520 px|Der ozeanische Kohlenstoffkreislauf ]]
+
[[Ozean im Klimasystem|Ozeane]] bedecken ca. 71 % der Erdoberfläche, wirken aufgrund ihrer thermischen Trägheit regulierend auf kurzfristige Wetter- und Klimaschwankungen und stellen einen gigantischen [[Kohlenstoff im Ozean|Kohlenstoffspeicher]] dar. Sie sind aber nicht nur aus physikalischer Sicht ein wichtiger Bestandteil des Erd- und [[Klimasystem]]s. Ihre [[Ökosystem]]e bergen einen großen Artenreichtum und dienen den Menschen sowohl als Erholungsort als auch als wichtige Nahrungsquelle. Mehr als eine Milliarde Menschen sind auf Fisch als wichtigste Proteinquelle angewiesen, vor allem in Entwicklungsländern. Man unterscheidet bei marinen Ökosystemen oft zwischen dem offenen Ozean und den küstennahen Gebieten, zu denen z. B. Mangrovenwälder und [[Korallenriffe]] gehören.
Meeresströmungen transportieren gelöstes Kohlendioxid z.B. in tiefere Schichten des Ozeans, besonders in den Regionen einer starken Tiefenwasserbildung, wo das Kohlendioxid dem Austausch mit der Atmosphäre über mehrere Jahrhunderte entzogen ist.
+
 
+
=== Direkte menschliche Einwirkungen ===
=== biologische Kohlenstoff-Pumpe ===
+
 
+
Auch ohne den Klimawandel sind die marinen Ökosysteme bereits durch menschliche Aktivitäten stark beeinträchtigt. Auf hoher See ist vor allem die Überfischung und Verschmutzung der Meere problematisch. An den Küsten findet ein starkes Bevölkerungswachstum statt. Bereits 23 % der Weltbevölkerung lebt nicht weiter als 100 km von Küsten entfernt und unterhalb einer Höhe von 100m über dem Meeresspiegel. Die Bevölkerungsdichte ist dort dreimal höher als im Mittel über den besiedelten Landgebieten und 12 von weltweit 16 Städten mit mehr als 10 Mio. Einwohnern befinden sich dort.<ref name="AR4-2-6">IPCC (2007): Climate Change 2007, Working Group II: "Impacts, Adaptation and Vulnerability", [http://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-wg2-chapter6.pdf Chapter 6: Coastal systems and low-lying areas].</ref>
Die Meerespflanzen (das Phytoplankton) nehmen Kohlendioxid durch Photosynthese aus dem Oberflächenwasser auf und geben es durch Veratmung wieder ab; ein Teil wird vom Zooplankton aufgenommen. Absterbende organische Partikel des Phyto- und Zooplanktons (partikularer organischer Kohlenstoff = particular organic carbon = POC) sinken in tiefere Schichten ab, wo der Kohlenstoff als organischer gelöster Kohlenstoff (DOC) im Meerwasser gelöst wird. Ein Teil der absterbenden Teilchen und des gelösten organischen Kohlenstoffs gelangt bis auf den Meeresboden und wird damit für sehr lange Zeiträume ganz dem Oberflächenwasser und damit dem Austausch mit der Atmosphäre entzogen.
+
 
+
In Folge dessen breiten sich landwirtschaftliche Flächen, Aquakulturen, Industrie und Wohnungen aus. Oft ist der Tourismus dabei ein wichtiger Faktor. Die schnelle Urbanisierung hat viele Konsequenzen, z.B. die Umgestaltung von Küsten und Flussdeltas, den Bau von Wasserstraßen, Häfen, Pipelines, Mauern, Dämmen und Kanälen. Letztere Konstruktionen können die Zirkulation und damit den Süßwasser-, Sediment- und Nährstofftransport verändern. Beispielsweise kann Salzwasser so in Oberflächen- und Grundwasser eindringen. Auch Erosion an den Küsten und Überflutungen in Thailand, Indien, Vietnam und USA wurden der Degradation der Küstenökosysteme durch diese menschlichen Aktivitäten zugeschrieben.<ref name="AR4-2-6">IPCC (2007): Climate Change 2007, Working Group II: "Impacts, Adaptation and Vulnerability", [http://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-wg2-chapter6.pdf Chapter 6: Coastal systems and low-lying areas].</ref> Hinzu kommen die Entwässerung von Feuchtgebieten, Deforestation, Einleitung von Abwasser, Düngemitteln, Herbiziden und Antibiotika (aus Aquakulturen), der Abbau von Ressourcen wie Sand und Öl, die Fischerei und die Einfuhr fremder Arten.
=== Einfluss der CO<sub>2</sub>-Emissionen ===
+
 
+
=== Einflüsse des Klimawandels ===
Der Ozean hat in den Jahren 1980-1989 ca. 30% der anthropogenen CO<sub>2</sub>-Emissionen aufgenommen und damit erheblich zur Abmilderung des vom Menschen verursachten Treibhaueffekts beigetragen. Der im 21. Jahrhundert erwartete klimatische Wandel beeinflusst auch die CO<sub>2</sub>-Aufnahme durch den Ozean. Schon die zunehmende Aufnahme von Kohlendioxid selber vermindert die Möglichkeit des Oberflächenwassers weiteres Kohlendioxid aus der Atmosphäre aufzunehmen, da die Carbonat-Ionen durch die Reaktion mit Kohlendioxid zu Hydrogenkarbonat verbraucht werden, wodurch ein zunehmender Anteil des aufgenommenen Kohlendioxids in seiner gelösten Form im Wasser verbleibt. Der Effekt ist relativ groß: Bei einer weiteren Steigerung der atmosphärischen CO<sub>2</sub>-Konzentration um 100 ppm verringert sich die CO<sub>2</sub>-Aufnahme durch den Ozean um 40% gegenüber der ersten 100 ppm-Steigerung seit Beginn der Industrialisierung.<ref>vgl. IPCC (2001): Climate Change 2001: The Sientific Basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge and New York 2001, Box 3.3</ref>
+
 
+
Bislang waren all diese Einflüsse zusammen bedeutender als der anthropogene [[Klimawandel]]. Dies könnte sich in Zukunft jedoch ändern. Der Klimawandel gefährdet die marinen Ökosysteme in mehrfacher Weise: <ref name="AR4-2-4">IPCC (2007): Climate Change 2007, Working Group II: "Impacts, Adaptation and Vulnerability", [http://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-wg2-chapter4.pdf Chapter 4: Ecosystems, their properties, goods and services].</ref>
=== Einfluss der Klimaerwärmung ===
+
 
+
* durch die [[Erwärmung des Ozeans|Erwärmung des Wassers]]. Viele Arten werden daraufhin ihr Verbreitungsgebiet anpassen oder aussterben, was sich über die Nahrungsnetze auf viele andere Arten auswirkt. In [[Polargebiet|hohen Breiten]] wird zudem die [[Meereis|Eisschmelz]]e zu einer Bedrohung des Ökosystems an der Eiskante führen, welches zentral für das Nahrungsnetz in arktischen Breiten ist. An den Küsten stellt das [[Meereis]] zudem einen Schutz vor Erosion dar. Fehlt es, kann die Kraft der Wellen unmittelbar an der Küste angreifen. Auch können sich Krankheiten unter Meereslebewesen bei höheren Temperaturen stärker verbreiten.
Hinzu kommt, dass die Lösungsfähigkeit des Oberflächenwassers durch Erwärmung verringert wird, da der CO<sub>2</sub>-Partialdruck durch Erwärmung ansteigt und die Ausgasung von Kohlendioxid zunimmt. Eine Erwärmung der oberen Schichten des Ozeans verringert außerdem durch die Bildung von leichterem Oberflächenwasser tendenziell die Tiefenwasserproduktion, wodurch weniger Kohlenstoff aus den oberen in die unteren Schichten des Ozeans verfrachtet werden. Weniger klar sind die Auswirkungen höherer Temperaturen auf die biologisch gesteuerten Prozesse. Hier spielen vor allem die Nutzung und der Gehalt an Nährstoffen eine entscheidende Rolle.
+
* durch eine veränderte [[Meeresströmungen|Zirkulation]] (klein- und großräumig). Die großen Wirbel der Ozean zirkulation bergen verschiedene Ökosysteme, die sich infolge des Klimawandels ihre Lage und Ausdehnung verändern. Außerdem wird die Schichtung des Wassers stabiler: Die Erwärmung findet an der Oberfläche statt, so dass das oberflächennahe Wasser sich schneller erwärmt als die unteren Wasserschichten. Somit wird der Dichteunterschied größer und die vertikale Vermischung des Ozeans wird geschwächt. Insbesondere in Gebieten, wo eine Aufwärtsströmung vorherrscht, die meist Nährstoffe vom Boden in die euphotische (lichtdurchflutete) Zone heranführt, kann dies eine Gefährdung der Nahrungszufuhr bedeuten. Außerdem können sich auch die Küstenlinien betroffen sein, indem die Zu- und Abfuhr von Sediment sich verändert. Außerdem entscheiden die Strömungen darüber, wie viel Wärme und Nährstoffe ausgetauscht werden.
+
* durch einen veränderten Salzgehalt. Besonders in hohen Breiten, wo die Eisschmelze zu einer Versüßung des Wassers führt, können so salzliebende Arten gefährdet werden.
+
* durch den [[Aktueller Meeresspiegelanstieg|Anstieg des Meeresspiegels]]. Dies bedeutet nicht nur eine Überschwemmung tief gelegener Küstengebiete, sondern auch eine verstärkte Erosion. Auch der Lebensraum von vielen Tierarten wird so bedroht, da die Ökosysteme an Küsten meist besonders artenreich sind. Beispielsweise würde ein Meeresspiegelanstieg von 0,5 m etwa 32% jener karibischen Strände, an denen Schildkröten ihre Eier legen, zerstören. Es muss im Fall von solchen konkreten Auswirkungen mit beachtet werden, dass der Meeresanstieg regional unterschiedlich sein wird, z.B. in der Arktis stärker als im globalen Mittel. Lokal sind bis zu 50 % mehr als im globalen Mittel möglich.
== Einfluss des Klimawandels auf Korallenriffe ==
+
* durch die [[Ozeanversauerung|Versauerung des Meerwassers]]. Dies ist eine direkte Folge der erhöhten [[Kohlenstoff im Ozean|CO<sub>2</sub>-Konzentration]] und nicht der daraus resultierenden Klimaänderungen. Bis heute ist der pH-Wert bereits um 0,1 gesunken (was einen Anstieg der Konzentration von Hydrogencarbonat um 30 % bedeutet) und wird bis 2100 um weitere 0,3-0,4 sinken. Diese veränderte chemische Zusammensetzung des Wassers wird viele Organismen und Ökosysteme bedrohen, z. B. die [[Korallenriffe]].
+
* durch einen veränderten Wellengang. Ozeanwellen entstehen fast immer durch den Wind an der Meeresoberfläche. Eine Veränderung der Stürme wird somit auch den Wellengang betreffen, z.B. indem hohe Wellen häufiger werden. Dies führt zu einer zusätzlichen Erosion von Küstengebieten. [[Klimamodelle|Modelle]] sagen voraus, dass die Intensität von Stürmen in tropischen und mittleren Breiten zunehmen wird. Für ihre Häufigkeit gilt dies jedoch nicht; dabei herrscht eine zu große Unsicherheit.
Die Korallenriffe in den warmen tropischen Meeren gelten neben dem tropischen Regenwald als artenreichster Lebensraum der Erde. 60 000 Arten sind bekannt, über 400 000 Arten werden vermutet. Korallenriffe beherbergen mehr als 25% der bekannten Meeresfische und sind damit eine wichtige Nahrungsquelle für viele Küstenbewohner. Sie sind außerdem ein wichtiger wirtschaftlicher Faktor im Tourismus vieler Länder und dienen dem Küstenschutz. Die weltweiten Riffareale werden auf 617 000 km<sup>2</sup> geschätzt, die Ausdehnung der flachen, gut entwickelten Korallenriffe auf 255 000 km<sup>2</sup>, wovon 58% durch die Folgen der Industrialisierrung, des Tourismus, der Landwirtschaft, des direkten Abbaus und anderer menschlicher Aktivitäten als gefährdet gelten. Als neuer Bedrohungsfaktor ist in jüngster Zeit der Klimawandel ausfindig gemacht worden.
+
 
+
Trotz all dieser Auswirkungen ist es sehr schwierig, den Einfluss des Klimawandels in Beobachtungen heute schon nachzuweisen. Küstensysteme sind natürlicherweise sehr veränderbar, man denke nur an die permanente Umgestaltung von Stränden durch Stürme und Strömungen. Natürliche Klimaschwankungen, die zum Teil Jahrzehnte dauern können (z.B. [[NAO]], [[ENSO]] oder das Auftreten von [[Hurrikane|Hurrikanen]]), haben ebenso einen Einfluss. Genauso ist es schwierig, einzelne Einflüsse des Klimawandels in ihrer Bedeutung zu separieren.
=== Einfluss steigender Wassertemperaturen ===
+
 
+
Ein Beispiel für beide Herausforderungen ist die Erosion. In letzter Zeit zeigen die meisten Strände weltweit eine Erosion. Welchen Anteil der steigende Meeresspiegel, veränderte Windmuster, der Sedimentnachschub und andere Faktoren daran jeweils haben, ist aber unklar. Auch bei Prognosen für die Zukunft muss bedacht werden, dass solche komplexen Ökosysteme nicht-linear reagieren können. Das bedeutet, dass die Auswirkungen verschiedener Umwelteinflüsse nicht einfach zusammengezählt werden dürfen, sondern dass die Kombination verschiedener Stressfaktoren auch unvorhergesehene Folgen haben kann. Beispielsweise gibt es keinen einfachen und allgemein gültigen Zusammenhang zwischen dem Meeresspiegelanstieg und der horizontalen Verschiebung der Küstenlinie. So kommt es auch darauf an, wie das Sediment und das Land auf den Meeresspiegel und Stürme reagieren, im Fall von Kliffs zudem auf die Gesteinsart, die Temperatur, den Niederschlag und den Zyklus von Gefrieren und Auftauen.
Es wird angenommen, dass der Anstieg des Meeresspiegels in den nächsten 100 Jahren keine oder nur eine geringe Bedrohung für die Riffe darstellt, da gesunde Riffe wahrscheinlich zu einem vertikalen Wachstum von bis zu 10 mm pro Jahr in der Lage sind. Wie das bei den zahlreichen bereits degradierten Riffen in den dichtbevölkerten Regionen Südostasiens, Ostafrikas und der Karibik aussieht, ist weniger klar. Als bedrohlicher werden jedoch der Anstieg der Wassertemperatur und des CO<sub>2</sub>-Gehaltes im Meerwasser angesehen.<ref>IPCC (2001): Climate Change 2001: Impacts, Adaption, and Vulnerability. Contribution of the Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge and New York 2001,6.4.5.</ref> Die Temperatur des Oberflächenwassers in den tropischen Ozeanen ist in den letzten Jahrzehnten kontinuierlich angestiegen, und es wird erwartet, dass sie bis 2100 um weitere 1-2 °C zunehmen wird. Viele Korallenriffe existieren bereits an oder nahe der Temperaturobergrenze. Eine weitere Erwärmung wird zunehmend lebensfeindliche Bedingungen schaffen.
+
 
+
== Einfluss des Klimawandels auf Korallenriffe ==
Von vielen Wissenschaftlern wird die in jüngster Zeit beobachtete Korallenbleiche bereits als Folge der globalen Erwärmung gedeutet. Das Ausbleichen der Korallen entsteht dadurch, dass die symbiotisch auf der Oberfläche der Korallen lebenden Algen durch eine Temperaturerhöhung ihr lebenswichtiges Pigment, das Chlorophyll, verlieren und absterben. Zurück bleiben die weißen, bleichen Korallenstöcke, die bei längerem Anhalten dieses Zustandes ebenfalls absterben. Korallenbleiche kann außerdem auch durch verstärkte Sonnenstrahlung zustandekommen; weitere begünstigende Faktoren sind extrem niedrige Tiden, eine Absenkung des Salzgehaltes und Umweltbelastungen durch den Menschen. Diese Faktoren wirken in vielen Fällen zusammen. So kann eine extrem niedrige Ebbe das Korallendach stärker der Sonnnenstrahlung aussetzen, und die durch Umwelteinflüsse geschwächten oder erkrankten Korallen sind dem temperaturbedingten Ausbleichen schutzloser ausgesetzt.
+
 
+
Die Korallenriffe in den warmen tropischen Meeren gelten neben dem tropischen Regenwald als artenreichster Lebensraum der Erde. Von den weltweiten Riffarealen werden 58% durch Überfischung und Verschmutzung, sowie anderer menschlicher Aktivitäten als gefährdet eingeschätzt. Als neuer Bedrohungsfaktor ist in jüngster Zeit der Klimawandel hinzu gekommen. Dieser wirkt in vierfacher Weise auf die Korallenriffe ein: durch den Meeresspiegelanstieg, durch veränderte Sturmintensitäten, durch erhöhte Wassertemperaturen und durch die Versauerung des Wassers.
In den letzten 20 Jahren war die Korallenbleiche häufig mit El Niño-Ereignissen gekoppelt, duch die die Meeresoberflächentemperatur um mehrere Grad Celsius über das normale Maximum angestiegen, in manchen Gebieten aber auch der Wasserspiegel deutlich abgesenkt war. Beispiellos war die Korallenbleiche 1998 in ausgedehnten Gebieten, die mit dem El Niño 1997/98 in Zusammenhang gebracht und als Vorzeichen künftiger Ereignisse bei einer weiteren Erwärmung gedeutet wurde. Die Korallenbleiche wurde aus insgesamt 32 Ländern und Inselstaaten berichtet, mit den Hauptgebieten im Pazifik, Indischen Ozean und der Karibik.Auch das australische Große Barrier-Riff war ernsthaft betroffen.<ref>International Society for Reef Studies, ISRS (1998): Coral Bleaching - a Global Concern, Reef Encounter 24, 19-20</ref> Einige Korallenarten konnten sich nach ein bis zwei Monaten wieder erholen, bei anderen war das nicht der Fall. In den Lagunen von Belize z.B. stieg 1998 die Temperatur des Wassers in 2-10 m Tiefe auf bis zu 31,5 °C (normalerweise werden selten 29 °C überschritten) und verursachte eine Korallenbleiche, wie es sie in den letzten 3000 Jahren nicht gegeben hat.<ref>Aronson, R.B., W.F. Precht, I.G. Macintyre and T.J.T. Murdoch (2000): Ecosystems: Coral bleach-out in Belize, Nature 405, 36</ref> Diese und andere Befunde legen es nahe anzunehmen, dass bei einem weiteren Anstieg der Meeresoberflächentemperatur durch den menschenbedingten Treibhauseffekt das Phänomen der Korallenbleiche und des Korallensterbens in Zukunft noch ernstere Formen annehmen wird. Der prognostizierte Meerespiegelanstieg könnte dem aber auch entgegenwirken, zumal in einigen Gebieten wie vor der Westküste Thailands die Korallenbleiche primär in Folge der Meeresspiegelabsenkung durch den El Niño 1997/98 und der dadurch ermöglichten stärkeren Solarbestrahlung erklärt wurde.<ref>Brown, B.E., R.P. Dunne, M.S. Goodson, A.E. Douglas (2000): Marine ecology: Bleaching patterns in reef corals, Nature 404, 142-143</ref>
+
* Hauptartikel: [[Korallenriffe]]
+
 
=== Einfluss der CO<sub>2</sub>-Emissionen ===
+
== Einfluss des Klimawandels auf Meeresfische, Meeressäuger und Meeresvögel ==
+
=== Meeresfische ===
Da Korallenriffe einerseits große Mengen von Kalk akkumulieren, anderseits bei der Karbonatverwitterung aber auch Kohlenstoff freisetzen, sind sie eng in den Kohlenstoffkreislauf eingebunden. In jüngster Zeit ist viel diskutiert worden, ob eine Erhöhung der atmosphärischen und in deren Folge der im Meerwasser gelösten CO<sub>2</sub>-Konzentration sich negativ auf die Fähigkeit von Korallen zur Akkumulation von Kalk auswirken könnte. Die Bildung von Kalk hängt vom Sättigungsgrad des Kalziumcarbonat (CaCO<sub>3</sub>) im Meeresoberflächenwasser ab. In Meerwasser glöstes Kohlendioxid reagiert nun aber mit Wasser und Kalziumkarbonat zu Hydrogenkarbonationen und Kalziumionen (CO<sub>2</sub> + H<sub>2</sub>O + CaCO<sub>3</sub> <-> 2HCO<sub>3</sub><sup>-</sup> + Ca<sup>2+</sup>). Kohlendioxid entzieht also dem Meerwasser Kalziumkarbonat und beeinträchtigt damit die Kalzifizierung der Korallen. Da der Ozean bisher schon einen erheblichen Teil des anthropogen emittierten Kohlendioxids aus der Atmosphäre aufgenommen hat, müsste sich das schon auf die Kalkbildung ausgewirkt haben. Tatsächlich wird von manchen Forschern die Kalzifizierungsrate gegenwärtig auf 91% des vorindustriellen Wertes eingeschätzt und könnte danach auf 79% im Jahre 2065 und 73% im Jahre 2100 absinken.<ref>Kleypas, J.A., R.W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon, and B.N. Opdyke (199): Geochemical Consequences of Increased Atmospheric Carbon Dioxide on Coral Reefs, Science 284, 118-120; Leclercq, N.L., J.E.A.N.-Pierre Gattuso and J.E.A.N. Jaubert (2000): CO<sub>2</sub> partial pressure controls the calcification rate of a coral community, Global Change Biology 6, 329 -334</ref> Die wichtigsten Folgen einer geringeren Kalkbildung sind weichere Korallenskelette, geringere Wachstumsraten und eine höhere Empfindlichkeit gegenüber Erosion. Und eine Reduzierung der Kalkakkumulation könnte sich auch auf die Fähigkeit der Riffe auswirken, bei einem steigenden Meeresspiegel in ausreichendem Maße vertikal mitzuwachsen.
+
Von 1987 bis 1996 lagen die Fangergebnisse von Fischen in den Weltmeeren bei durchschnittlich 74,5 Millionen t pro Jahr. Fluktuationen bei den Quoten einiger der wichtigsten kommerziellen Arten wie Hering, Makrele, Heilbutt und Thunfisch werden häufig auf die Überfischung mit modernster Ausrüstung zurückgeführt. Neben anderen Faktoren wie das Räuber-Beute-Verhältnis haben jedoch auch Klimaschwankungen eine wichtige Auswirkung auf die Fischbestände.<ref>Westernhagen, H.v. (1998): Klima und Fischerei, in: Lozán, J.L., Graßl, H., Hupfer, P. (1998): Warnsignal Klima. Wissenschaftliche Fakten, Hamburg, S.286-291</ref> Das Klima beeinflusst zahlreiche für die Meeresfische entscheidenden Faktoren wie die Wassertemperatur, die Eisverteilung, den Salzgehalt, die Verfügbarkeit von Nahrung usw. Trotz der Wechselwirkungen zwischen diesen Faktoren kommt der Wassertemperatur dabei die entscheidende Rolle zu, da sie direkt die Laichzeit, das Aufwachsen der Jungfische und die Produktionsrate der Nahrung bestimmt. So zeigte sich beim Kabeljau in der Nordsee, der hier an der Südgrenze seines Verbreitungsgebietes auf der Nordhalbkugel vorkommt, parallel mit der Erwärmung des Meereswassers seit 1988 auch ein Rückgang der Fangergebnisse, die wiederum in einem Jahr mit kühleren Temperaturen wie 1996 wieder besser ausfielen.<ref>O'Brien, C. M., C. J. Fox, B. Planque, J. Casey (2000): Climate variability and North Sea cod, Nature 404, 142</ref> Eine auffällige Parallele zwischen Kabeljaufischerei und Temperaturentwicklung weisen auch die Fangergebnisse vor West-Grönland auf. Ebenso erwiesen sich zwischen den Ergebnissen der japanischen und kalifornischen Sardinenfänge und den Schwankungen des Klimas im Nordpazifischen Raum aufällige Parallelen im Dekaden-Bereich. Und während der El Niño- und La Niña-Ereignisse der letzten Jahrzehnte verlagerten sich mit der Temperatur der Meeresoberfläche auch die Hauptfanggebiete von Thunfisch im tropischen Pazifik.<ref name="TAR-6-3-4">IPCC (2001): Climate Change 2001: Impacts, Adaption, and Vulnerability. Contribution of the Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge and New York 2001, 6.3.4.</ref>
+
 
+
Auch wenn es schwierig ist, die Folgen von Überfischung und von klimabedingten Änderungen im Einzelfall zu trennen, kann man davon auszugehen, dass der Fischbestand der Weltmeere auch von klimatischen Veränderungen abhängt. Das bedeutet, dass auch eine künftige Änderung bei den Meerestemperaturen durch den menschenbedingten Treibhauseffekt Folgen für den Fischbestand und die Fangergebnisse haben wird. Welche Folgen zu erwarten sind, lässt sich mit Einschränkung aus den El Niño-Ereignissen im Südpazifik ableiten, bei denen das erwärmte Oberflächenwasser vor der peruanischen Küste die Phytoplanktongemeinschaften so veränderte, dass die Sardellenbestände stark zurückgehen. Eine allgemein steigende Meeresoberflächentemperatur könnte in Einzelfällen auch Arten in anderen Regionen negativ beeinflussen. So könnte sich der Rotlachs ganz aus dem Nordpazifik auf das Bering-Meer zurückziehen. Allerdings sagen einige Modelle eine Intensivierung des Alëuten-Tiefs und damit eine Abkühlung des Meerwassers voraus, was den Lachsbestand im Nordpazifik eher erhöhen könnte. Dieses Beispiel zeigt, dass die Klimamodelle z. Zt. noch keine gesicherten Prognosen über die regionalen Folgen des Klimawandels auf die Fischerei erlauben.
== Einzelnachweise ==
+
 
+
=== Meeressäuger und -vögel ===
 +
[[Bild:Eisbaer.jpg|thumb|420 px|Eisbär]]
 +
Problematische Folgen bei einer weiteren Erwärmung werden vor allem für marine Säugetiere in höheren Breiten erwartet. Ein Rückzug des arktischen und antarktischen Meereises gefährdet z.B. die Ernährung von Eisbären und bedroht die des Blauwals und des weitverbreiteten Adéliepinguins. Die Randregionen des Meereises sind der wichtigste Lebensraum für die arktische Pflanzen- und Tierwelt. An der Unterseite der Eisschollen existieren einzellige Algen, von denen wenige Zentimeter lange Krebse leben, die als Futter u.a. für den Polardorsch dienen, der die Hauptnahrungsquelle für die Ringelrobbe darstellt. Für Eisbären sind die Eisrandregionen das natürliche Jagdrevier, in dem sie auf Robbenfang gehen. Bei einem Rückzug der Eisbedeckung nach Norden werden die Lebens- und Aufzuchtmöglichkeiten der Ringelrobbe, des wichtigsten Beutetieres der Eisbären, deutlich eingeschränkt. Als besonders kritisch gilt in dieser Hinsicht die Situation in der Hudson Bay, wo die Eisbären bereits heute an der Hungergrenze leben. Bei einer weiteren Erwärmung mit saisonaler Verkürzung des Eisvorkommens und Reduzierung der Eisbedeckung ist eine erfolgreiche Aufzucht der Jungtiere nicht mehr gewährleistet.<ref>Gradinger, R. (1998): Natürliche und anthropogene Veränderungen im arktischen marinen Ökosystem, in: Lozán, J.L., Graßl, H., Hupfer, P. (1998): Warnsignal Klima. Wissenschaftliche Fakten, Hamburg 1998, S.277-280; Hansell, R.J.C., J.R. Malcolm, H. Welch, R. L. Jefferies and P.A. Scott (1998): Atmospheric Change and Biodiversity in the Arctic, Environmental Monitoring and Assessment 49, 303-325</ref>
 +
 
 +
Auch der antarktische Krill, ein ca. sechs Zentimeter großer Krebs, lebt zu einem großen Teil vom Phytoplankton an der Unterseite des Meereises. Vom Krill als Nahrungsquelle sind viele Wal-, Robben-, Fisch- und Vogelarten nahezu vollständig abhängig, u.a. auch der Blauwal. Seit den siebziger Jahren ist ein deutlicher Rückgang der antarktischen Meereisbedeckung beobachtet worden und als Folge ebenso eine deutliche Verringerung der Krillbestände. Als Konsequenz haben auch die Bestände der Jungvögel des Adéliepinguins seit 1987 um 30% abgenommen.<ref>Loeb, V., V.Siegel, O.Holm-Hansen, R.Hewitt, W.Fraser, W.Trivelpiece, S.Trivelpiece (1997): Effects of sea-ice extent and krill or salp dominance on the Antarctic food web, Nature387, 897 - 900</ref> Auch der Blauwal ist in hohem Maße vom Krill abhängig und gilt bei einer weiteren Erwärmung des arktischen Meerwassers als gefährdet.
 +
 
 +
=== Aquakulturen ===
 +
30% der Fischproduktion für den menschlichen Konsum entstammten 1997 der Aquakultur. Es wird erwartet, dass der Aufwärtstrend der Fischzucht, auch für die Produktion von Fischmehl und Fischöl, in Zukunft anhalten wird. Der Klimawandel wird wahrscheinlich sehr gegensätzliche Folgen für die Aquakultur haben. In mittleren und hohen Breiten werden Luft- und Wassertemperatur ansteigen und damit die Zuchtsaison verlängern und die Fischproduktion steigern. Andererseits haben höhere Temperaturen einen negativen Einfluss auf den gelösten Sauerstoff im Wasser und begünstigen die Verbreitung von Krankheitserregern und die Algenblüte. Auch der erwartete Anstieg von Extremereignissen wie Stürmen, Überflutungen und Trockenperioden wird die Produktion möglicherweise negativ beeinflussen.<ref name="TAR-6-3-4">IPCC (2001): Climate Change 2001: Impacts, Adaption, and Vulnerability. Contribution of the Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge and New York 2001, 6.3.4.</ref>
 +
 
 +
== Einzelnachweise ==
 
<references/>  
 
<references/>  
+
 
+
== Weblinks ==
+
* [http://www.fishbase.org/search.php Sammlung von Informationen über fast alle Fischarten]
== Siehe auch ==
+
* [http://www.meerwasser-lexikon.de/ Meerwasserlexikon]
+
* [http://www.bmu.de/meeresumweltschutz/meeresschutzstrategien/deutschland/doc/42318.php Nationale Strategie für die nachhaltige Nutzung und den Schutz der Meere]
* [[Versauerung der Meere]]
+
* [http://www.millenniumassessment.org/documents/document.288.aspx.pdf Küstengebiete, ihre Relevanz und Gefährdung] Ein Bericht auf Englisch aus der Reihe Millennium Assessment Reports
+
* [http://e-newschannel.de/2011/02/wie-die-verschmutzung-der-weltmeere-voranschreitet/ Report: Wie die Verschmutzung der Weltmeere voranschreitet]
+
* [http://www.bik-f.de/files/veranstaltungen/konferenz_mai_2011/praesentationen/forum2/1_wehrmann_austernriffe_im_wattenmeer_die_okologischen_auswirkungen_von_klimawandel_und_bioin-vasionen_.pdf Austernriffe im Wattenmeer] Ökologische Auswirkungen von Klimawandel und Bioinvasionen, eine Präsentation
{{CC-Lizenz}}
+
 
+
== Literatur ==
[[Kategorie:Klimafolgen]]
+
* Wiltshire, K.H., et al. (2011): Küsten und Schelfmeere: Temperaturveränderungen und Biodiversität, in: José L. Lozán et al. (Hrsg.): Warnsignal Klima: Die Meere - Änderungen und Risiken. Wissenschaftliche Auswertungen, Hamburg, 37-42
 +
* U. Kubetzki & S. Garthe (2011): Auswirkungen von Klimaänderungen auf Seevögel, in: José L. Lozán et al. (Hrsg.): Warnsignal Klima: Die Meere - Änderungen und Risiken. Wissenschaftliche Auswertungen, Hamburg, 203-207
 +
* J. Alheit (2011): Klimatisch bedingte Veränderung der Verbreitung von Fischbeständen. Beispiel: Sardellen und Sardinen, in: José L. Lozán et al. (Hrsg.): Warnsignal Klima: Die Meere - Änderungen und Risiken. Wissenschaftliche Auswertungen, Hamburg, 241-246
 +
 
 +
 
 +
== Lizenzhinweis ==
 +
{{CC-Lizenz}}
 +
{{Kontakt}}
 +
{{#set:
 +
Beeinflusst von=Kohlenstoff im Ozean
 +
|Beeinflusst von=Ozeanversauerung
 +
|Beeinflusst von=Erwärmung des Ozeans
 +
|umfasst=Korallenriffe
 +
|Teil von=Auswirkungen des Klimawandels auf Ökosysteme
 +
|Umfasst räumlich=Cyanobakterien der Ostsee im Klimawandel
 +
|Umfasst räumlich=Einfluss des Klimawandels auf die Bodenfauna polarer Schelfmeere
 +
|Umfasst räumlich=Cyanobakterien der Ostsee im Klimawandel
 +
|Unterrichtsmaterial=[http://www.riffe.de/schule Riffe - ein faszinierendes Thema für den Schulunterricht] Materialien für die Fächer Biologie, Erdkunde und Geologie
 +
}}
 +
<metakeywords>DBS-Wiki-KW, Kohlenstoff im Ozean, Ozeanversauerung, Ökosysteme, Korallenriffe, Biosphäre</metakeywords>
 +
 
 +
[[Kategorie:Ökosysteme]]
 +
[[Kategorie:Biosphäre]]

Aktuelle Version vom 15. September 2017, 11:33 Uhr

Fische und Korallenriffe vor den Malediven

1 Gefährdungsfaktoren

1.1 Bedeutung mariner Ökoysteme

Ozeane bedecken ca. 71 % der Erdoberfläche, wirken aufgrund ihrer thermischen Trägheit regulierend auf kurzfristige Wetter- und Klimaschwankungen und stellen einen gigantischen Kohlenstoffspeicher dar. Sie sind aber nicht nur aus physikalischer Sicht ein wichtiger Bestandteil des Erd- und Klimasystems. Ihre Ökosysteme bergen einen großen Artenreichtum und dienen den Menschen sowohl als Erholungsort als auch als wichtige Nahrungsquelle. Mehr als eine Milliarde Menschen sind auf Fisch als wichtigste Proteinquelle angewiesen, vor allem in Entwicklungsländern. Man unterscheidet bei marinen Ökosystemen oft zwischen dem offenen Ozean und den küstennahen Gebieten, zu denen z. B. Mangrovenwälder und Korallenriffe gehören.

1.2 Direkte menschliche Einwirkungen

Auch ohne den Klimawandel sind die marinen Ökosysteme bereits durch menschliche Aktivitäten stark beeinträchtigt. Auf hoher See ist vor allem die Überfischung und Verschmutzung der Meere problematisch. An den Küsten findet ein starkes Bevölkerungswachstum statt. Bereits 23 % der Weltbevölkerung lebt nicht weiter als 100 km von Küsten entfernt und unterhalb einer Höhe von 100m über dem Meeresspiegel. Die Bevölkerungsdichte ist dort dreimal höher als im Mittel über den besiedelten Landgebieten und 12 von weltweit 16 Städten mit mehr als 10 Mio. Einwohnern befinden sich dort.[1]

In Folge dessen breiten sich landwirtschaftliche Flächen, Aquakulturen, Industrie und Wohnungen aus. Oft ist der Tourismus dabei ein wichtiger Faktor. Die schnelle Urbanisierung hat viele Konsequenzen, z.B. die Umgestaltung von Küsten und Flussdeltas, den Bau von Wasserstraßen, Häfen, Pipelines, Mauern, Dämmen und Kanälen. Letztere Konstruktionen können die Zirkulation und damit den Süßwasser-, Sediment- und Nährstofftransport verändern. Beispielsweise kann Salzwasser so in Oberflächen- und Grundwasser eindringen. Auch Erosion an den Küsten und Überflutungen in Thailand, Indien, Vietnam und USA wurden der Degradation der Küstenökosysteme durch diese menschlichen Aktivitäten zugeschrieben.[1] Hinzu kommen die Entwässerung von Feuchtgebieten, Deforestation, Einleitung von Abwasser, Düngemitteln, Herbiziden und Antibiotika (aus Aquakulturen), der Abbau von Ressourcen wie Sand und Öl, die Fischerei und die Einfuhr fremder Arten.

1.3 Einflüsse des Klimawandels

Bislang waren all diese Einflüsse zusammen bedeutender als der anthropogene Klimawandel. Dies könnte sich in Zukunft jedoch ändern. Der Klimawandel gefährdet die marinen Ökosysteme in mehrfacher Weise: [2]

  • durch die Erwärmung des Wassers. Viele Arten werden daraufhin ihr Verbreitungsgebiet anpassen oder aussterben, was sich über die Nahrungsnetze auf viele andere Arten auswirkt. In hohen Breiten wird zudem die Eisschmelze zu einer Bedrohung des Ökosystems an der Eiskante führen, welches zentral für das Nahrungsnetz in arktischen Breiten ist. An den Küsten stellt das Meereis zudem einen Schutz vor Erosion dar. Fehlt es, kann die Kraft der Wellen unmittelbar an der Küste angreifen. Auch können sich Krankheiten unter Meereslebewesen bei höheren Temperaturen stärker verbreiten.
  • durch eine veränderte Zirkulation (klein- und großräumig). Die großen Wirbel der Ozean zirkulation bergen verschiedene Ökosysteme, die sich infolge des Klimawandels ihre Lage und Ausdehnung verändern. Außerdem wird die Schichtung des Wassers stabiler: Die Erwärmung findet an der Oberfläche statt, so dass das oberflächennahe Wasser sich schneller erwärmt als die unteren Wasserschichten. Somit wird der Dichteunterschied größer und die vertikale Vermischung des Ozeans wird geschwächt. Insbesondere in Gebieten, wo eine Aufwärtsströmung vorherrscht, die meist Nährstoffe vom Boden in die euphotische (lichtdurchflutete) Zone heranführt, kann dies eine Gefährdung der Nahrungszufuhr bedeuten. Außerdem können sich auch die Küstenlinien betroffen sein, indem die Zu- und Abfuhr von Sediment sich verändert. Außerdem entscheiden die Strömungen darüber, wie viel Wärme und Nährstoffe ausgetauscht werden.
  • durch einen veränderten Salzgehalt. Besonders in hohen Breiten, wo die Eisschmelze zu einer Versüßung des Wassers führt, können so salzliebende Arten gefährdet werden.
  • durch den Anstieg des Meeresspiegels. Dies bedeutet nicht nur eine Überschwemmung tief gelegener Küstengebiete, sondern auch eine verstärkte Erosion. Auch der Lebensraum von vielen Tierarten wird so bedroht, da die Ökosysteme an Küsten meist besonders artenreich sind. Beispielsweise würde ein Meeresspiegelanstieg von 0,5 m etwa 32% jener karibischen Strände, an denen Schildkröten ihre Eier legen, zerstören. Es muss im Fall von solchen konkreten Auswirkungen mit beachtet werden, dass der Meeresanstieg regional unterschiedlich sein wird, z.B. in der Arktis stärker als im globalen Mittel. Lokal sind bis zu 50 % mehr als im globalen Mittel möglich.
  • durch die Versauerung des Meerwassers. Dies ist eine direkte Folge der erhöhten CO2-Konzentration und nicht der daraus resultierenden Klimaänderungen. Bis heute ist der pH-Wert bereits um 0,1 gesunken (was einen Anstieg der Konzentration von Hydrogencarbonat um 30 % bedeutet) und wird bis 2100 um weitere 0,3-0,4 sinken. Diese veränderte chemische Zusammensetzung des Wassers wird viele Organismen und Ökosysteme bedrohen, z. B. die Korallenriffe.
  • durch einen veränderten Wellengang. Ozeanwellen entstehen fast immer durch den Wind an der Meeresoberfläche. Eine Veränderung der Stürme wird somit auch den Wellengang betreffen, z.B. indem hohe Wellen häufiger werden. Dies führt zu einer zusätzlichen Erosion von Küstengebieten. Modelle sagen voraus, dass die Intensität von Stürmen in tropischen und mittleren Breiten zunehmen wird. Für ihre Häufigkeit gilt dies jedoch nicht; dabei herrscht eine zu große Unsicherheit.

Trotz all dieser Auswirkungen ist es sehr schwierig, den Einfluss des Klimawandels in Beobachtungen heute schon nachzuweisen. Küstensysteme sind natürlicherweise sehr veränderbar, man denke nur an die permanente Umgestaltung von Stränden durch Stürme und Strömungen. Natürliche Klimaschwankungen, die zum Teil Jahrzehnte dauern können (z.B. NAO, ENSO oder das Auftreten von Hurrikanen), haben ebenso einen Einfluss. Genauso ist es schwierig, einzelne Einflüsse des Klimawandels in ihrer Bedeutung zu separieren.

Ein Beispiel für beide Herausforderungen ist die Erosion. In letzter Zeit zeigen die meisten Strände weltweit eine Erosion. Welchen Anteil der steigende Meeresspiegel, veränderte Windmuster, der Sedimentnachschub und andere Faktoren daran jeweils haben, ist aber unklar. Auch bei Prognosen für die Zukunft muss bedacht werden, dass solche komplexen Ökosysteme nicht-linear reagieren können. Das bedeutet, dass die Auswirkungen verschiedener Umwelteinflüsse nicht einfach zusammengezählt werden dürfen, sondern dass die Kombination verschiedener Stressfaktoren auch unvorhergesehene Folgen haben kann. Beispielsweise gibt es keinen einfachen und allgemein gültigen Zusammenhang zwischen dem Meeresspiegelanstieg und der horizontalen Verschiebung der Küstenlinie. So kommt es auch darauf an, wie das Sediment und das Land auf den Meeresspiegel und Stürme reagieren, im Fall von Kliffs zudem auf die Gesteinsart, die Temperatur, den Niederschlag und den Zyklus von Gefrieren und Auftauen.

2 Einfluss des Klimawandels auf Korallenriffe

Die Korallenriffe in den warmen tropischen Meeren gelten neben dem tropischen Regenwald als artenreichster Lebensraum der Erde. Von den weltweiten Riffarealen werden 58% durch Überfischung und Verschmutzung, sowie anderer menschlicher Aktivitäten als gefährdet eingeschätzt. Als neuer Bedrohungsfaktor ist in jüngster Zeit der Klimawandel hinzu gekommen. Dieser wirkt in vierfacher Weise auf die Korallenriffe ein: durch den Meeresspiegelanstieg, durch veränderte Sturmintensitäten, durch erhöhte Wassertemperaturen und durch die Versauerung des Wassers.

3 Einfluss des Klimawandels auf Meeresfische, Meeressäuger und Meeresvögel

3.1 Meeresfische

Von 1987 bis 1996 lagen die Fangergebnisse von Fischen in den Weltmeeren bei durchschnittlich 74,5 Millionen t pro Jahr. Fluktuationen bei den Quoten einiger der wichtigsten kommerziellen Arten wie Hering, Makrele, Heilbutt und Thunfisch werden häufig auf die Überfischung mit modernster Ausrüstung zurückgeführt. Neben anderen Faktoren wie das Räuber-Beute-Verhältnis haben jedoch auch Klimaschwankungen eine wichtige Auswirkung auf die Fischbestände.[3] Das Klima beeinflusst zahlreiche für die Meeresfische entscheidenden Faktoren wie die Wassertemperatur, die Eisverteilung, den Salzgehalt, die Verfügbarkeit von Nahrung usw. Trotz der Wechselwirkungen zwischen diesen Faktoren kommt der Wassertemperatur dabei die entscheidende Rolle zu, da sie direkt die Laichzeit, das Aufwachsen der Jungfische und die Produktionsrate der Nahrung bestimmt. So zeigte sich beim Kabeljau in der Nordsee, der hier an der Südgrenze seines Verbreitungsgebietes auf der Nordhalbkugel vorkommt, parallel mit der Erwärmung des Meereswassers seit 1988 auch ein Rückgang der Fangergebnisse, die wiederum in einem Jahr mit kühleren Temperaturen wie 1996 wieder besser ausfielen.[4] Eine auffällige Parallele zwischen Kabeljaufischerei und Temperaturentwicklung weisen auch die Fangergebnisse vor West-Grönland auf. Ebenso erwiesen sich zwischen den Ergebnissen der japanischen und kalifornischen Sardinenfänge und den Schwankungen des Klimas im Nordpazifischen Raum aufällige Parallelen im Dekaden-Bereich. Und während der El Niño- und La Niña-Ereignisse der letzten Jahrzehnte verlagerten sich mit der Temperatur der Meeresoberfläche auch die Hauptfanggebiete von Thunfisch im tropischen Pazifik.[5]

Auch wenn es schwierig ist, die Folgen von Überfischung und von klimabedingten Änderungen im Einzelfall zu trennen, kann man davon auszugehen, dass der Fischbestand der Weltmeere auch von klimatischen Veränderungen abhängt. Das bedeutet, dass auch eine künftige Änderung bei den Meerestemperaturen durch den menschenbedingten Treibhauseffekt Folgen für den Fischbestand und die Fangergebnisse haben wird. Welche Folgen zu erwarten sind, lässt sich mit Einschränkung aus den El Niño-Ereignissen im Südpazifik ableiten, bei denen das erwärmte Oberflächenwasser vor der peruanischen Küste die Phytoplanktongemeinschaften so veränderte, dass die Sardellenbestände stark zurückgehen. Eine allgemein steigende Meeresoberflächentemperatur könnte in Einzelfällen auch Arten in anderen Regionen negativ beeinflussen. So könnte sich der Rotlachs ganz aus dem Nordpazifik auf das Bering-Meer zurückziehen. Allerdings sagen einige Modelle eine Intensivierung des Alëuten-Tiefs und damit eine Abkühlung des Meerwassers voraus, was den Lachsbestand im Nordpazifik eher erhöhen könnte. Dieses Beispiel zeigt, dass die Klimamodelle z. Zt. noch keine gesicherten Prognosen über die regionalen Folgen des Klimawandels auf die Fischerei erlauben.

3.2 Meeressäuger und -vögel

Eisbär

Problematische Folgen bei einer weiteren Erwärmung werden vor allem für marine Säugetiere in höheren Breiten erwartet. Ein Rückzug des arktischen und antarktischen Meereises gefährdet z.B. die Ernährung von Eisbären und bedroht die des Blauwals und des weitverbreiteten Adéliepinguins. Die Randregionen des Meereises sind der wichtigste Lebensraum für die arktische Pflanzen- und Tierwelt. An der Unterseite der Eisschollen existieren einzellige Algen, von denen wenige Zentimeter lange Krebse leben, die als Futter u.a. für den Polardorsch dienen, der die Hauptnahrungsquelle für die Ringelrobbe darstellt. Für Eisbären sind die Eisrandregionen das natürliche Jagdrevier, in dem sie auf Robbenfang gehen. Bei einem Rückzug der Eisbedeckung nach Norden werden die Lebens- und Aufzuchtmöglichkeiten der Ringelrobbe, des wichtigsten Beutetieres der Eisbären, deutlich eingeschränkt. Als besonders kritisch gilt in dieser Hinsicht die Situation in der Hudson Bay, wo die Eisbären bereits heute an der Hungergrenze leben. Bei einer weiteren Erwärmung mit saisonaler Verkürzung des Eisvorkommens und Reduzierung der Eisbedeckung ist eine erfolgreiche Aufzucht der Jungtiere nicht mehr gewährleistet.[6]

Auch der antarktische Krill, ein ca. sechs Zentimeter großer Krebs, lebt zu einem großen Teil vom Phytoplankton an der Unterseite des Meereises. Vom Krill als Nahrungsquelle sind viele Wal-, Robben-, Fisch- und Vogelarten nahezu vollständig abhängig, u.a. auch der Blauwal. Seit den siebziger Jahren ist ein deutlicher Rückgang der antarktischen Meereisbedeckung beobachtet worden und als Folge ebenso eine deutliche Verringerung der Krillbestände. Als Konsequenz haben auch die Bestände der Jungvögel des Adéliepinguins seit 1987 um 30% abgenommen.[7] Auch der Blauwal ist in hohem Maße vom Krill abhängig und gilt bei einer weiteren Erwärmung des arktischen Meerwassers als gefährdet.

3.3 Aquakulturen

30% der Fischproduktion für den menschlichen Konsum entstammten 1997 der Aquakultur. Es wird erwartet, dass der Aufwärtstrend der Fischzucht, auch für die Produktion von Fischmehl und Fischöl, in Zukunft anhalten wird. Der Klimawandel wird wahrscheinlich sehr gegensätzliche Folgen für die Aquakultur haben. In mittleren und hohen Breiten werden Luft- und Wassertemperatur ansteigen und damit die Zuchtsaison verlängern und die Fischproduktion steigern. Andererseits haben höhere Temperaturen einen negativen Einfluss auf den gelösten Sauerstoff im Wasser und begünstigen die Verbreitung von Krankheitserregern und die Algenblüte. Auch der erwartete Anstieg von Extremereignissen wie Stürmen, Überflutungen und Trockenperioden wird die Produktion möglicherweise negativ beeinflussen.[5]

4 Einzelnachweise

  1. 1,0 1,1 IPCC (2007): Climate Change 2007, Working Group II: "Impacts, Adaptation and Vulnerability", Chapter 6: Coastal systems and low-lying areas.
  2. IPCC (2007): Climate Change 2007, Working Group II: "Impacts, Adaptation and Vulnerability", Chapter 4: Ecosystems, their properties, goods and services.
  3. Westernhagen, H.v. (1998): Klima und Fischerei, in: Lozán, J.L., Graßl, H., Hupfer, P. (1998): Warnsignal Klima. Wissenschaftliche Fakten, Hamburg, S.286-291
  4. O'Brien, C. M., C. J. Fox, B. Planque, J. Casey (2000): Climate variability and North Sea cod, Nature 404, 142
  5. 5,0 5,1 IPCC (2001): Climate Change 2001: Impacts, Adaption, and Vulnerability. Contribution of the Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge and New York 2001, 6.3.4.
  6. Gradinger, R. (1998): Natürliche und anthropogene Veränderungen im arktischen marinen Ökosystem, in: Lozán, J.L., Graßl, H., Hupfer, P. (1998): Warnsignal Klima. Wissenschaftliche Fakten, Hamburg 1998, S.277-280; Hansell, R.J.C., J.R. Malcolm, H. Welch, R. L. Jefferies and P.A. Scott (1998): Atmospheric Change and Biodiversity in the Arctic, Environmental Monitoring and Assessment 49, 303-325
  7. Loeb, V., V.Siegel, O.Holm-Hansen, R.Hewitt, W.Fraser, W.Trivelpiece, S.Trivelpiece (1997): Effects of sea-ice extent and krill or salp dominance on the Antarctic food web, Nature387, 897 - 900

5 Weblinks

6 Literatur

  • Wiltshire, K.H., et al. (2011): Küsten und Schelfmeere: Temperaturveränderungen und Biodiversität, in: José L. Lozán et al. (Hrsg.): Warnsignal Klima: Die Meere - Änderungen und Risiken. Wissenschaftliche Auswertungen, Hamburg, 37-42
  • U. Kubetzki & S. Garthe (2011): Auswirkungen von Klimaänderungen auf Seevögel, in: José L. Lozán et al. (Hrsg.): Warnsignal Klima: Die Meere - Änderungen und Risiken. Wissenschaftliche Auswertungen, Hamburg, 203-207
  • J. Alheit (2011): Klimatisch bedingte Veränderung der Verbreitung von Fischbeständen. Beispiel: Sardellen und Sardinen, in: José L. Lozán et al. (Hrsg.): Warnsignal Klima: Die Meere - Änderungen und Risiken. Wissenschaftliche Auswertungen, Hamburg, 241-246


7 Lizenzhinweis

Dieser Artikel ist ein Originalartikel des Klima-Wiki und steht unter der Creative Commons Lizenz Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland. Informationen zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können in einigen Fällen durch Anklicken dieser Mediendateien abgerufen werden und sind andernfalls über Dieter Kasang zu erfragen. CC-by-sa.png
Kontakt: Dieter Kasang

Meine Werkzeuge