Antarktischer Eisschild

Aus Klimawandel
Satellitenbild der Antarktis

Gegenwärtig gibt es nur zwei Eisschilde auf der Erde, den Antarktischen und den Grönländischen Eisschild. Im Eiszeitalter waren zusätzlich weite Teile Nordamerikas und Eurasiens vereist. Der Niederschlag über der Antarktis ist der einer Wüste, mit 130 mm/Jahr. Dennoch befinden sich hier 70 % der weltweiten Süßwasservorräte.[1]

Der Antarktische Eisschild

Auf dem Höhepunkt des Südsommers sind die Antarktis und der umgebende Ozean von einer Eisfläche von 31,6 km2 bedeckt. Davon sind 18,5 Mio. km2 Meereis. Der auf Land und Ozeanboden ruhende Eisschild umfasst eine Fläche von 11,9 Mio. km2; und 1,6 Mio. km2 machen die auf dem Wasser schwimmenden Eisschelfgebiete aus. Der Antarktische Eisschild ist an seiner mächtigsten Stelle 4897 m dick und würde bei seinem vollständigen Abschmelzen den globalen Meeresspiegel um 58 m ansteigen lassen.[2] Mit 26,4 Millionen km3 ist das Eisvolumen der Antarktis[3] etwa neun Mal so groß wie das des grönländischen Eisschildes. Auch die Fläche des Eisschildes der Antarktis ist mit fast 14 Mio km2 etwa acht Mal größer als die Grönlands. Der Eisschild verteilt sich auf unterschiedliche Teile des antarktischen Kontinents.

  • In der Ostantarktis liegt das Eis auf felsigem und gebirgigem Untergrund und erreicht eine maximale Eisdicke von fast 5 km (max. 4897 m)[2]. Zum Rand hin behindern ähnlich wie auf Grönland Gebirgszüge den Eisabfluss, der über mehrere hundert Kilometer lange Eisströme und Auslassgletscher in den Südlichen Ozean erfolgt.
  • Der Westantarktische Eisschild ruht zu einem großen Teil auf Felsuntergrund, der über weite Teile unter dem Meeresspiegel liegt, weshalb er auch als mariner Eisschild bezeichnet wird. Er ist von großen Schelfeisgebieten umgeben, die etwa 11 % der Ausdehnung des Eisschildes ausmachen und in die relativ schnell fließende Gletscher aus dem Innern münden, vor allem in das Filchner-Ronne- und in das Ross-Schelfeisgebiet. Auch an der Küste zur Amundsensee gibt es einen bedeutenden Gletscherabfluss.
  • Eine Sonderstellung nimmt die Antarktische Halbinsel ein, die bis 62,5 oS nach Norden reicht und der klimatisch sensitivste Bereich ist. Auch hier spielen Schelfeisgebiete, inbesondere das Larsen-Schelf-Eis, eine wichtige Rolle.

Beobachtungsmethoden

Die ersten direkten Beobachtungsdaten haben seit den 1940er Jahren Luftbilder geliefert. In den 1970er Jahren kamen Satellitenbilder hinzu, die in den 1990er Jahren durch Radarbilder von Satelliten ergänzt wurden, durch welche Daten auch bei Wolkenbedeckung gesammelt werden konnten. Hinzu kamen Messinstrumente auf dem Eis und Unterwasserfahrzeige zur Beobachtung des Untergrunds, der Eisunterseite und der Eigenschaften des Ozeanwassers.[4]

Abschätzungen über Veränderungen des gesamten antarktischen Eisschildes sind in jüngster Zeit durch satellitengestützte Beobachtungen des Oberflächenniveaus und Bestimmungen der Schwerkraft des antarktischen Kontinents versucht worden. Höhendifferenzmessungen/Altimetermessungen sind für die Abschätzung der Massenbilanz jedoch nur begrenzt brauchbar. Sie zeigen nur den Höhenunterschied zwischen der Eisoberfläche und dem jeweiligen Satelliten, erfassen aber nicht die Dichteänderungen in einzelnen Schichten des Eises und damit auch nicht die Massenbilanz. Außerdem sind sie sehr ungenau in den steil abfallenden Küstenbereichen der Antarktis.[1] Und sie reichten lange Zeit nicht über den 82. Breitengrad hinaus.

Inzwischen sind allerdings die Messmethoden verbessert worden, indem die Beobachtung weiter an den Südpol heranrückte und an Hängen durch eine höhere Auflösung genauere Daten liefert, so dass auf der Grundlage der Höhenmessungen des Satelliten Cryosat-2 seit 2010 auch Massenveränderungen des Antarktischen Eisschildes bestimmt werden können.[5]

Eisverlust und -gewinn in cm Wasseräquivalent nach Gravimetermessungen

Seit 2002 bestimmen zwei Satelliten des GRACE-Projekts[6] das Schwerefeld der Erde mit bisher nicht da gewesener Genauigkeit. Dadurch können Veränderungen der Masse der Eisschilde recht genau ermittelt werden.[7] Bei diesen Gravimetermessungen werden auch die Regionen südlich des 82 oS berücksichtigt. Außerdem werden Massenveränderungen durch Messungen der Fließgeschwindigkeit des abfließenden Eises an den Rändern sowie des Schneefalls durch Satelliten und mit Hilfe von Klimamodellen festgestellt.

Datei:AES MB1992-2017.jp
Massenbilanz des Antarktischen Eisschilds. AES: Antarktischer Eisschild; OAES: Ostantarktischer Eisschild; WAES: Westantarktischer Eisschild; ESAH: Eisschild der Antarktischen Halbinsel. Säulen: Nettoverlust (-gewinn) an Eismasse in Gigatonnen pro Jahr in dem angegebenen Zeitraum

Massenbilanz des Antarktischen Eisschilds

Nach einer 2018 in der Zeitschrift Nature publizierten Zusammenfassung von zahlreichen Auswertungen von Satellitendaten und Modellsimulationen[8] zeigt der Antarktische Eisschild eine stark negative Massenbilanz. Bereits 1992-2011 betrug der jährliche Verlust an Eis für die gesamte Antarktis 76 Gigatonnen[9] pro Jahr. 2012 bis 2017 hat sich die Verlustrate dann auf 219 Gt/Jahr gesteigert und damit fast verdreifacht. Über den gesamten Zeitraum von 1992 bis 2017 gemittelt waren es 109 Gigatonnen an Eis, die der Eisschild netto jedes Jahr verloren hat. An diesem Prozess waren die verschiedenen Teile des Antarktischen Eisschilds sehr unterschi8edlich beteiligt. Der Hauptanteil fiel dabei mit einem großen Abstand und 94 Gt/Jahr auf den Westantarktischen Eisschild. Der Ostantarktische Eisschild zeigte in den ersten beiden Jahrzehnten einen leichten Massengewinn, der sich aber für die letzten fünf Jahre des Zeitraum in einen Massenverlust von 28 Gt/Jahr verwandelte.[10]

Temperaturentwicklung

Eine wichtige und viel diskutierte Frage ist die nach der Erwärmung der Antarktis. Nach den letzten Erkenntnissen haben sich die Temperaturen über der Antarktis insgesamt trotz regionaler Abkühlung in den letzten 50 Jahren erhöht, hauptsächlich über der Antarktischen Halbinsel und der nördlichen Westantarktis. In der Ostantarktis sind die Veränderungen dagegen nur gering. Die Ursachen werden in der globalen Erwärmung durch die Emission von Treibhausgasen und in Veränderungen der stratosphärischen Zirkulation durch die Ozonzerstörung über der Antarktis gesehen.[1]

Neben der Lufttemperatur spielt auch eine höhere Ozeantemperatur eine wichtige Rolle, da das Meerwasser das Eis von den Rändern her angreifen kann. Seit den 1950er Jahren hat es eine deutliche Erwärmung des sog. Südlichen Ozeans bis in über 1000 m Tiefe gegeben.[11] Es ist jedoch unbekannt, wie weit nach Süden bis an die antarktischen Küsten diese Erwärmung reicht, weil entsprechende Messungen fehlen. Hier liegt einer der größten Unbekannten im Verständnis der Entwicklung des Antarktischen Eisschildes.

Eisdynamik

Schmelzen von Schelfeis an der Unterseite

Während die Massenzunahme mit hoher Wahrscheinlichkeit auf verstärkte Niederschläge, die mit der globalen Erwärmung im Zusammenhang stehen, zurückzuführen ist, wird der Hauptgrund für die Massenverluste des antarktischen Eisschildes in der Eisdynamik in den Küstenregionen gesehen. Entscheidend ist dabei die Rolle der Schelfeisgebiete. Ähnlich wie an manchen Küstengebieten Grönlands ist ihre Instabilität die Ursache für ein stärkeres Abfließen von Auslassgletschern und Eisströmen. Die Schelfeise werden von zahlreichen Zuflüssen gespeist, die seit der letzten Eiszeit den Boden bis weit unter die Meeresoberfläche erodiert haben. Sie erstrecken sich von der Aufsetzlinie über einen erodierten Meeresboden, der an einer Endmoräne aus dem glazialen Maximum der Eisausdehnung endet. Über diese Moräne dringt relativ warmes und salzreiches Wasser in die Kaverne unterhalb des Schelfeises ein und verursacht das Abschmelzen an der Unterseite. Durch Aufnahme von Schmelzwasser wird der Salzgehalt und damit die Dichte gesenkt. Das nunmehr leichtere Wasser strömt nach oben entlang der Schelfeisunterseite aus der Kaverne heraus, wodurch neues warmes und salzreiches Wasser Richtung Aufsetzlinie herein gezogen wird. Die so entstehende Zirkulation kann zu immer neuem Abschmelzen an der Schelfeisunterseite führen, wodurch das Schelfeis instabil und brüchig werden und ins Meer abdriften kann. Diese Prozesse sind stark von Veränderungen der Ozeantemperaturen abhängig. So haben Modellrechnungen eine Verdoppelung der Schmelzrate bei einer Erhöhung der Ozeantemperatur um 0,5 ºC ergeben.[12]

Veränderungen der Schelfeisgrenze der Antarktischen Halbinsel. Die farbigen Daten und Linien geben die Lage der Außengrenze des Schelfeises zum Ozean hin an.

Besonders das an die Amundsen-See angrenzende Schelfeis zeigte zwischen 1992 und 2001 starke Verringerungen der Eisdicke um bis zu 5,5 m pro Jahr. Die Ursache liegt in dem Abschmelzen an der Unterseite der Eisschelfe durch warmes Ozeanwasser mit Schmelzraten von 4-17 m/Jahr. Seit 1992 gingen dadurch 92 Gigatonnen[13] Eis pro Jahr verloren und die Eissschelfe verloren 1-7 % ihrer Mächtigkeit. Gleichzeitig hat sich die Aufsetzlinie zurückgezogen, und das Eis ist an der Außenkante zum Meer zunehmend abgebrochen. Die Folge war ein verstärkter Abfluss der Auslassgletscher aus dem Innern des Westantarktischen Eisschildes. Das Schelfeis bremst normalerweise den Abfluss der Gletscher aus dem antarktischen Eisschild. Wird es brüchig oder fehlt es, nimmt die Geschwindigkeit der abfließenden Gletscher zu. Damit wird zunehmend mehr Eis dem Ozean zugeführt. Zwischen 1992 und 2001 hat sich dadurch die Oberfläche des Westantarktischen Eisschildes rund um die Amundsen-See um bis zu 59 cm pro Jahr abgesenkt.[14]

Oberflächliches Abschmelzen

Andere Ursachen als an der Amundsen-See hatte die bekannte Auflösung des Larsen-B-Schelfeises an der Ostküste der Antarktischen Halbinsel im Jahre 2002, nachdem 1995 schon das kleinere Larsen-A-Schelfeis verschwunden war. Die Antarktische Halbinsel reicht am weitesten nach Norden und zeigte in den letzten 50 Jahren die stärkste regionale Erwärmung der Welt. Hier wurde seit den 1950er Jahren eine Erhöhung der Temperatur um fast 3 oC bzw. 0,54 ºC pro Jahrzehnt gemessen (das globale Mittel liegt bei 0,11 ºC pro Jahrzehnt). Und auch die Ozeantemperaturen sind im Sommer um über 1 ºC angestiegen. Aufgrund der weit nach Norden reichenden Lage und der deutlichen Erwärmung ist die Antarktische Halbinsel das einzige Gebiet des antarktischen Kontinents, bei dem das Abschmelzen an der Oberfläche von Bedeutung ist. Bei der Auflösung des Larsen-Schelfeises hat denn auch das Oberflächenschmelzwasser, das in Gletscherspalten drang, wohl die entscheidende Rolle gespielt. An vielen Schelfeisgebieten ist beobachtet worden, dass sich Oberflächenspalten im Sommer mit Wasser füllen, das nach dem Wiedergefrieren die Spalten weiter nach unten aufsprengt, bis es zum Auseinanderbrechen eines Eisschelfs kommt.[1] Auch beim Larsen-Schelfeis hat sich der Abfluss der Auslassgletscher in das Schelfeisgebiet nach dessen Auflösung und Abbrechen erhöht, und zwar bis um das Achtfache.

Projektionen

Für das 21. Jahrhundert wird das oberflächliche Abschmelzen des antarktischen Eisschildes wegen der niedrigen Temperaturen als relativ gering eingeschätzt. Ausnahmen sind die Küstenzonen und die Antarktische Halbinsel. Der Schneefall wird dagegen zunehmen, weil die Atmosphäre sich erwärmt und mehr Wasserdampf aufnehmen kann. Netto wird damit die Masse des Eisschildes um ca. 5 % zunehmen und damit zu einer Absenkung des Meeresspiegels nur durch Schneefall und oberflächliches Abschmelzen um 2 cm nach dem Szenario RCP2.6 und um 4 cm nach RCP8.5 bis 2100 führen.[15]

Der Antarktische Eisschild verliert jedoch nicht nur an Masse durch oberflächliches Abtauen, sondern auch durch den Abfluss von Eis über verschiedene Auslassgletscher Richtung Meer. Berücksichtigt man diese Eisdynamik, ist damit zu rechnen, dass der Antarktische Eisschild durchaus einen positiven Beitrag zum Anstieg des Meeresspiegels bis 2100 leisten wird, der vom IPCC mit einem mittleren Wert von 4 cm unabhängig von den Szenarien angegeben wird.[16] Dabei spielt vor allem das vorgelagerte Eisschelf eine entscheidende Rolle, das den Abfluss des Eises Richtung Ozean wie ein Widerlager verlangsamt. Löst sich dieses Eisschelf auf, kann das Eis ungehinderter ins Meer fließen, so wie es bei der bekannten Auflösung des Larsen-B-Schelfeises an der Ostküste der Antarktischen Halbinsel im Jahre 2002 der Fall war, das zeitweilig bis zu einer Verachtfachung der Abflussgeschwindigkeit der nachgelagerten Auslassgletscher geführt hat. Das Schelfeis ist zum einen durch das Abtauen an der Oberfläche wie beim Larsen-B-Schelfeis gefährdet, zum anderen durch Abschmelzen von unten, ausgelöst durch wärmeres Ozeanwasser. Diese Prozesse und die Folgen für die Eisdynamik sind nicht nur sehr schwierig zu beobachten, sondern auch nur begrenzt in Klimamodellen abzubilden.[17]

Gefährdet sind vor allem die großen Eisschelfe der Antarktischen Halbinsel und der Westantarktis. Bevor die großen antarktischen Eisschelfe, das Ross- und das Filchner-Ronne-Eisschelf jedoch ernsthaft bedroht sind, müsste es eine lokale Erwärmung von 5 bis 7 °C geben, die bis zum Ende des 21. Jahrhunderts eher unwahrscheinlich ist. Insgesamt schätzt der IPCC nach Sichtung der vorliegenden Literatur den Meeresspiegelanstieg bis zum Ende des 21. Jahrhunderts nur durch die dynamische Eisbewegungen des Antarktischen Eisschildes auf -1 bis +16 cm, unabhängig von den Szenarien. Die Bandbreite zeigt die große Unsicherheit und geringe Übereinstimmung bei den bisherigen Untersuchungen. Allerdings wird davon ausgegangen, dass sich der Beitrag durch die Eisdynamik nach dem Jahr 2100 fortsetzt.[18]

Projektionen mit einem neueren Eisschild-Schelf-Modell[19] in die fernere Zukunft machen trotz aller Unsicherheiten die Bedeutung der Szenarien sichtbar. Nach dem Szenario RCP2.6 gibt es bis 2100 nahezu keinen Massenverlust und damit keinen Meeresspiegelanstieg durch die Antarktis und nur eine Erhöhung des Meeresspiegels von 20 cm bis 2500. Das Szenario RCP4.5 verursacht dagegen einen nahezu kompletten Kollaps des Westantarktischen Eisschildes innerhalb der nächsten 500 Jahre, wodurch der Meeresspiegel durch den Massenverlust der gesamten Antarktis um 32 cm bis 2100 und um 5 m bis 2500 steigen würde. Noch gravierender würde sich das Szenario RCP8.5 auswirken. Das Larsen-C-Schelfeis löst sich danach um 2055 auf und die Auslassgletscher der Amundsen-See verlieren massiv an Masse und ziehen sich zurück. Bis 2100 trägt die Antarktis dann möglicherweise über 1 m zum Meeresspiegelanstieg bei. Innerhalb der folgenden 250 Jahre wird der Westantarktischen Eisschild weitgehend kollabieren. Nach 2500 Jahre beträgt der Beitrag zum Meeresspiegelanstieg durch die Antarktis insgesamt über 12 m. Die Ozeanerwärmung spielt dabei anfänglich eine wichtige Rolle für das Verhalten einzelner Auslassgletscher. Der langfristige Meeresspiegelanstieg in den Szenarien RCP4.5 und RCP8.5 wird jedoch hauptsächlich durch die atmosphärische Erwärmung und größere Oberflächenschmelze verursacht. Die Erwärmung des Ozeans verhindert allerdings über Jahrtausende die Wiederherstellung des Eisschildes nach einer Einstellung anthropogener CO2-Emissionen.

Ein Blick in die Vergangenheit

Interessante Einblicke in das Verhalten des Antarktischen Eisschildes bei klimatischen Änderungen erlauben Studien zur geologischen Vergangenheit. Die antarktische Vereisung begann vor ca. 34 Mio Jahre vh. Dafür gab es zwei Gründe: 1. die Trennung der Antarktis von Südamerika und Australien, wodurch der Antarktischen Zirkumpolarstrom entstand, der den Zustrom wärmerer Wassermassen von Norden unterband und somit eine thermische Isolierung der Antarktis bewirkte. 2. die bereits seit Ende des Paläozäns (55 Mio Jahre vh.) begonnene starke Abnahme des CO2-Gehalts durch starke Verwitterungsprozesse, die eine globale Abkühlung um 8 °C zur Folge hatte.[20] Nach dem Abschluss der Vereisung im Mittleren Miozän (12-10 Mio vh.) kam es zu verschiedenen wärmeren und kälteren Klimaphasen, die die Eismasse abnehmen und zunehmen ließ.

Vor allem zwei geologische Epochen sind dabei von Bedeutung, weil sie Vergleiche mit der gegenwärtigen Entwicklung erlauben.[21] Im Pliozän vor ca. 3 Mio Jahren lag die CO2-Konzentration wie gegenwärtig bei ungefähr 400 ppm, der Meeresspiegel war jedoch 10-30 m höher als heute. Dieser hohe Meeresspiegel erforderte neben dem Abschmelzen von Grönland und der Westantarktis auch einen deutlichen Eisverlust der Ostantarktis. Auch in der letzten Zwischeneiszeit, dem Eem (130.000-115.000 vh.), war der Meeresspiegel 6,0 bis 9,3 m höher als heute, wobei der CO2-Gehalt allerdings bei nur 280 ppm lag und die globale Mitteltemperatur nur 0-2 °C wärmer war als heute. Die Antarktis hat nach Modellrechnungen zu dem Meeresspiegelanstieg wahrscheinlich mit 3,6-7,4 m und Grönland mit 1,5-2 m beigetragen, die Ausdehnung des Meerwassers durch Erwärmung, der sog. sterische Effekt, mit 0,4 m. Beide Epochen zeigen, dass es auch bei einer nur geringen Erwärmung langfristig zu einem deutlichen Eisverlust von Eisschilden und einem entsprechenden Meersspiegelanstieg kommen kann.

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 Rignot, E. (2011): Is Antarctica melting?, WIREs Climate Change 2, 324–331
  2. 2,0 2,1 Shepherd, A. , H.A. Fricker & S.L. Farrell (2018): Trends and connections across the Antarctic cryosphere, Nature 558, 223-232, https://doi.org/10.1038/s41586-018-0171-6
  3. Mayer, C., und H. Oerter (2014): Die Massenbilanzen des grönländischen und antarktischen Inlandeises und der Charakter ihrer Veränderungen, in: José L. Lozán, Hartmut Graßl, Dirk Notz, Dieter Piepenburg (Hrsg.): Warnsignal Klima: Die Polarregionen. Wissenschaftliche Fakten, 115-120
  4. Turner, J., A. Orr, G. H. Gudmundsson, A. Jenkins, R. G. Bingham, C.-D. Hillenbrand, and T. J. Bracegirdle (2017): Atmosphere-ocean-ice interactions in the Amundsen Sea Embayment, West Antarctica, Rev. Geophys., 55, 235-276, doi:10.1002/2016RG000532
  5. McMillan, M., A. Shepherd, A. Sundal, K. Briggs, A. Muir, A. Ridout, A. Hogg, and D. Wingham (2014): Increased ice losses from Antarctica detected by CryoSat-2, Geophysical Research Letters, 41, doi:10.1002/2014GL060111.
  6. GRACE steht für Gravity Recovery And Climate Experiment; vgl. Die Infoseite bei der Deutschen Luft- und Raumfahrtgesellschaft DLR
  7. Cazenave, A. et al.(2009): Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global and Planetary Change 65, 83–88
  8. The IMBIE Team (2018): Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558, https://doi.org/10.1038/s41586-018-0179-y
  9. 1 Gt = 1 Milliarde Tonnen
  10. s. Abb.
  11. Böning, C.W., A. Dispert, M. Visbek, S. Rintoul, F.U. Schwarzkopf (2008): The response of the Antarctic circumpolar current to recent climate change. Nature Geoscience, 864–869
  12. Lange, M.A., K. Grosfeld, M. Thoma und H. Sandhäger (2006): Die Wechselwirkung von Antarktischen Schelfeisgebieten und dem Ozean und der Beitrag zur ozeanischen Wassermassenbildung, in: José L. Lozán / Hartmut Graßl / Hans-W. Hubberten / Peter Hupfer / Ludwig Karbe / Dieter Piepenburg (Hrsg.): Warnsignale aus den Polarregionen. Wissenschaftliche Auswertungen, Hamburg, 87-91
  13. Eine Gigatonne entspricht einer Milliarde (109) Tonnen oder einer Billion (1012) Kilogramm.
  14. Shepherd, A., D. Wingham, E. Rignot (2004): Warm ocean is eroding West Antarctic Ice Sheet, Geophys. Res. Lett., Vol. 31, No. 23, L23402
  15. IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, 13.4.4, FAQ 13.2, Table 13.5
  16. IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, Table 13.5
  17. IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, 13.4.4
  18. IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, 13.4.4, Table 13.5
  19. DeConto, R.M., and D. Pollard (2016): Contribution of Antarctica to past and future sea-level rise, Nature 531, 591-597
  20. Grosfeld, K., M. Thoma, S. Göller & H. H. Hellmer (2015): Der Westantarktischen Eisschild im Klimawandel. In: Lozán, J. L., H. Grassl, D. Kasang, D. Notz & H. Escher-Vetter (Hrsg.): Warnsignal Klima. Das Eis der Erde, 238-244
  21. DeConto, R.M., and D. Pollard (2016): Contribution of Antarctica to past and future sea-level rise, Nature 531, 591-597


Literatur

Weblinks


Bildergalerie zum Thema


Lizenzangaben

Dieser Artikel ist ein Originalartikel des Klima-Wiki und steht unter der Creative Commons Lizenz Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland. Informationen zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können in den meisten Fällen durch Anklicken dieser Mediendateien abgerufen werden und sind andernfalls über Dieter Kasang zu erfragen. CC-by-sa.png
Kontakt: Dieter Kasang