Aktuelle Klimaänderungen: Unterschied zwischen den Versionen

Aus Klimawandel
KKeine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 11: Zeile 11:
== Die Rolle des Ozeans ==
== Die Rolle des Ozeans ==
Bei Betrachtung der gesamten Energie, die durch menschliche Aktivitäten in das Klimasystem gelangt, sollte man jedoch nicht nur die Atmosphäre berücksichtigen. Der allergrößte Teil der zusätzlichen Energie, die zwischen 1971 und 2010 das Erdsystem erwärmt hat, nämlich über 90 %, wurde vom Ozean aufgenommen.<ref name="IPCC 2013">IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, Box 3.1</ref> Die Erwärmung des Ozeans zeigt sich vor allem in den oberen 700 m Wasserschicht, aber auch zwischen 700 und 2000 m Tiefe. Der Ozean ist insofern in mancher Hinsicht ein besserer Indikator für die globale Erwärmung des Klimasystems durch den Menschen als die globale Oberflächentemperatur. Er nimmt nicht nur die mit Abstand größte Menge an zusätzliche Wärme auf, sondern zeigt auch weniger Schwankungen von Jahr zu Jahr und spiegelt damit besser die stetige Zunahme von anthropogenen Treibhausgasen wider als die einer stärkeren Variabilität unterliegenden atmosphärischen Temperaturen. Bei Berücksichtigung des Ozeans hat es daher auch die viel diskutierte „Erwärmungspause“ in den 2000er Jahren gar nicht gegeben.<ref name="MetOffice 2013">MetOffice (2013): The recent pause in global warming (1): What do observations of the climate system tell us?; MetOffice (2013): The recent pause in global warming (2): What are the potential causes?</ref> Die ‚Erde‘ hat sich weiterhin erwärmt; nur ist ein größerer Teil der Wärmemenge in den Ozean gegangen. Durch seine großes Volumen und seine hohe Wärmekapazität ist der Ozean mit Abstand das größte Wärme-Reservoir im Klimasystem. Die Wärmeaufnahme durch den Ozean stellt daher einen Puffer bei Klimaänderungen dar und verlangsamt im gegenwärtigen Klimawandel deutlich die Erwärmungsrate der Atmosphäre.
Bei Betrachtung der gesamten Energie, die durch menschliche Aktivitäten in das Klimasystem gelangt, sollte man jedoch nicht nur die Atmosphäre berücksichtigen. Der allergrößte Teil der zusätzlichen Energie, die zwischen 1971 und 2010 das Erdsystem erwärmt hat, nämlich über 90 %, wurde vom Ozean aufgenommen.<ref name="IPCC 2013">IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, Box 3.1</ref> Die Erwärmung des Ozeans zeigt sich vor allem in den oberen 700 m Wasserschicht, aber auch zwischen 700 und 2000 m Tiefe. Der Ozean ist insofern in mancher Hinsicht ein besserer Indikator für die globale Erwärmung des Klimasystems durch den Menschen als die globale Oberflächentemperatur. Er nimmt nicht nur die mit Abstand größte Menge an zusätzliche Wärme auf, sondern zeigt auch weniger Schwankungen von Jahr zu Jahr und spiegelt damit besser die stetige Zunahme von anthropogenen Treibhausgasen wider als die einer stärkeren Variabilität unterliegenden atmosphärischen Temperaturen. Bei Berücksichtigung des Ozeans hat es daher auch die viel diskutierte „Erwärmungspause“ in den 2000er Jahren gar nicht gegeben.<ref name="MetOffice 2013">MetOffice (2013): The recent pause in global warming (1): What do observations of the climate system tell us?; MetOffice (2013): The recent pause in global warming (2): What are the potential causes?</ref> Die ‚Erde‘ hat sich weiterhin erwärmt; nur ist ein größerer Teil der Wärmemenge in den Ozean gegangen. Durch seine großes Volumen und seine hohe Wärmekapazität ist der Ozean mit Abstand das größte Wärme-Reservoir im Klimasystem. Die Wärmeaufnahme durch den Ozean stellt daher einen Puffer bei Klimaänderungen dar und verlangsamt im gegenwärtigen Klimawandel deutlich die Erwärmungsrate der Atmosphäre.
[[Bild:Temp land ocean1880-2019.png|thumb|480px|Abb. 2: Veränderung der globalen Oberflächentemperatur über dem Land (rot) und der Meeresoberflächentemperatur (blau) 1880-2019 im Vergleich zur Basis 1951-1980]]
== Erwärmumg von Land und Ozean ==
Analysen von Daten der geologischen Vergangenheit, hsitorische Beobachtungen und Modellsimulationen haben gezeigt, dass sich das Land schneller als der Ozean (Meeresoberflächentemperatur) erwärmt.<ref name="IPCC 2019">IPCC (2019): Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, 2.2.1.2</ref>
Die globale Temperatur über dem Land lagen 2015-2019 um ca. 1,7 °C über den vorindustriellen (1850-1900) Werten. Die Meeresoberflächentemperaturen waren 2015-2019 um etwa 0,8 °C wärmer als in vorindustrieller Zeit.<ref name="WMO 2019" /> D.h. die globalen Landtemperaturen erhöhen sich ungefähr doppelt so schnell wie die Meeresoberflächentemperaturen. Die Ursache liegt nicht so sehr in dem Unterschied der Wärmekapazität zwischen Wasser und Land. Wichtiger sind andere Faktoren wie die unterschiedlihe Verdunstung, Feedbackprozesse zwischen Land und Klima und Änderungen des Einflusses anthropogener Aerosole.<ref name="IPCC 2019" /> Die Verdunstung nimmt über dem Meer aufgrund der unbegrenzt zur Verfügung stehenden Wassermenge infolge des Klimawandels stärker zu als über dem Land. Die Folge ist eine geringere Erwärmung durch den Energieverbrauch der Verdunstung.


== Einzelnachweise ==
== Einzelnachweise ==

Version vom 19. März 2020, 21:05 Uhr

Abb. 1: Globale Jahresmittelwerte der bodennahen Lufttemperatur und Jahrzehntmittelwerte

Die globale Mitteltemperatur

Die globale Mitteltemperatur hat sich besonders seit 1980 stark erhöht und ein im 20. Jahrhundert unübertroffenes Niveau erreicht. In Abb. 1 sind einerseits starke Schwankungen von Jahr zu Jahr sichtbar, andererseits insgesamt eine deutliche Temperaturerhöhung über die letzten vier Jahrzehnte. Von den zehn wärmsten Jahren der gesamten Periode liegen alle mit Ausnahme des Jahres 1998 bereits im 21. Jahrhundert (sogar von den 16 wärmsten Jahren liegen 15 nach 2000). 2016, 2019, 2015, 2017, 2018, 2014, 2010, 2013, 2005, und 1998 waren die bisher wärmsten Jahre der Messreihe. 2015 bis 2019 war mit deutlichem Abstand die wärmste 5-Jahresperiode seit Beginn der Messungen.[1] Die fünf Jahre 2014-2018 waren um 1 °C wärmer als die vorindustriellen Temperaturen. Dabei hat das Tempo der Erwärmung deutlich zugenommen.[2] Und es gibt zahlreiche Regionen mit einem stärkeren Temperaturanstieg als dem globalen Mittel, so dass 20-40 % der menschlichen Bevölkerung bereits einen Anstieg von 1,5 °C erfahren haben.[3]

Das bisher wärmste Jahr, 2016, war durch einen starken El Niño, eine periodisch auftretende ungewöhnliche Erwärmung im tropischen Pazifik, beeinflusst, während im Jahr 2017 eine schwache La Niña, die kühle Gegenphase zum warmen El Niño,[4] und 2019 eine neutrale Sitution vorherrschten. 2019 und 2017 waren somit die wärmsten Jahre seit Beginn der Messungen ohne den Einfluss durch einen El Niño und zeigen damit deutlich die Auswirkungen der Erwärmung durch anthropogene Treibhausgase. Zwischen den wichtigsten Temperaturreihen der NASA, NOA und des MetOffice gibt es in dieser Hinsicht weitgehende Übereinstimmung.[5]

Tages- und Nachttemperaturen

Bei einem Vergleich zwischen Tages- und Nachttemperaturen zeigt sich, dass die Minimumtemperaturen stärker als die Maximumtemperaturen zunahmen. Das hat zu der Vermutung geführt, dass dafür eventuell die zunehmende Verstädterung verantwortlich sein könnte, da die urbanen Wärmeinseln die Nachttemperaturen stärker als die Tageswerte beeinflussen. Untersuchungen haben jedoch gezeigt, dass der urbane Anteil an der weltweiten Zunahme der Landtemperaturen seit 1900 nicht mehr als 0,06 oC beträgt, bei der globalen Temperatur (unter Berücksichtigung der siedlungsfreien Ozeanflächen) sogar nur 0,02 oC.[6] Bei der Berechnung der globalen Temperatur sind die Effekte der städtischen Wärmeinseln berücksichtigt, die aber auf die Messstationen in den meisten Fällen keinen nennenswerten Einfluss haben, da diese oft in Parks und Gärten liegen und nicht gerade in Straßenschluchten.

Die Rolle des Ozeans

Bei Betrachtung der gesamten Energie, die durch menschliche Aktivitäten in das Klimasystem gelangt, sollte man jedoch nicht nur die Atmosphäre berücksichtigen. Der allergrößte Teil der zusätzlichen Energie, die zwischen 1971 und 2010 das Erdsystem erwärmt hat, nämlich über 90 %, wurde vom Ozean aufgenommen.[7] Die Erwärmung des Ozeans zeigt sich vor allem in den oberen 700 m Wasserschicht, aber auch zwischen 700 und 2000 m Tiefe. Der Ozean ist insofern in mancher Hinsicht ein besserer Indikator für die globale Erwärmung des Klimasystems durch den Menschen als die globale Oberflächentemperatur. Er nimmt nicht nur die mit Abstand größte Menge an zusätzliche Wärme auf, sondern zeigt auch weniger Schwankungen von Jahr zu Jahr und spiegelt damit besser die stetige Zunahme von anthropogenen Treibhausgasen wider als die einer stärkeren Variabilität unterliegenden atmosphärischen Temperaturen. Bei Berücksichtigung des Ozeans hat es daher auch die viel diskutierte „Erwärmungspause“ in den 2000er Jahren gar nicht gegeben.[8] Die ‚Erde‘ hat sich weiterhin erwärmt; nur ist ein größerer Teil der Wärmemenge in den Ozean gegangen. Durch seine großes Volumen und seine hohe Wärmekapazität ist der Ozean mit Abstand das größte Wärme-Reservoir im Klimasystem. Die Wärmeaufnahme durch den Ozean stellt daher einen Puffer bei Klimaänderungen dar und verlangsamt im gegenwärtigen Klimawandel deutlich die Erwärmungsrate der Atmosphäre.

Abb. 2: Veränderung der globalen Oberflächentemperatur über dem Land (rot) und der Meeresoberflächentemperatur (blau) 1880-2019 im Vergleich zur Basis 1951-1980

Erwärmumg von Land und Ozean

Analysen von Daten der geologischen Vergangenheit, hsitorische Beobachtungen und Modellsimulationen haben gezeigt, dass sich das Land schneller als der Ozean (Meeresoberflächentemperatur) erwärmt.[9] Die globale Temperatur über dem Land lagen 2015-2019 um ca. 1,7 °C über den vorindustriellen (1850-1900) Werten. Die Meeresoberflächentemperaturen waren 2015-2019 um etwa 0,8 °C wärmer als in vorindustrieller Zeit.[2] D.h. die globalen Landtemperaturen erhöhen sich ungefähr doppelt so schnell wie die Meeresoberflächentemperaturen. Die Ursache liegt nicht so sehr in dem Unterschied der Wärmekapazität zwischen Wasser und Land. Wichtiger sind andere Faktoren wie die unterschiedlihe Verdunstung, Feedbackprozesse zwischen Land und Klima und Änderungen des Einflusses anthropogener Aerosole.[9] Die Verdunstung nimmt über dem Meer aufgrund der unbegrenzt zur Verfügung stehenden Wassermenge infolge des Klimawandels stärker zu als über dem Land. Die Folge ist eine geringere Erwärmung durch den Energieverbrauch der Verdunstung.

Einzelnachweise

  1. NOAA (2020): Global Climate Report - Annual 2019
  2. 2,0 2,1 WMO (2019): WMO Statement on the State of the Global Climate
  3. IPCC (2018): Global Warming of 1.5 °C, 1.1
  4. Met Office (2018): 2017: warmest year on record without El Niño
  5. CarbonBrief (2019): State of the climate: How the world warmed in 2018
  6. IPCC (2007): Climate Change 2007, Working Group I: The Science of Climate Change, 3.2.2.2
  7. IPCC (2013): Climate Change 2013, Working Group I: The Science of Climate Change, Box 3.1
  8. MetOffice (2013): The recent pause in global warming (1): What do observations of the climate system tell us?; MetOffice (2013): The recent pause in global warming (2): What are the potential causes?
  9. 9,0 9,1 IPCC (2019): Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, 2.2.1.2

Weblinks


Bildergalerie zum Thema


Lizenzhinweis

Dieser Artikel ist ein Originalartikel des Klima-Wiki und steht unter der Creative Commons Lizenz Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland. Informationen zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können in den meisten Fällen durch Anklicken dieser Mediendateien abgerufen werden und sind andernfalls über Dieter Kasang zu erfragen. CC-by-sa.png
Kontakt: Dieter Kasang